Стадии репродукции вирусов. Репродукция вирусов Высвобождение вириона из "хозяйской" клетки

  • 4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.
  • 5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.
  • 6. Методы окраски микробов и их отдельных структур.
  • 7. Морфология и химический состав бактерий. Протопласты. L – формы бактерий.
  • 8. Ультраструктура бактерий.
  • 9. Спорообразование у бактерий. Патогенные спорообразующие микробы.
  • 10. Капсулы у бактерий. Методы их обнаружения.
  • 11. Жгутики и включения у бактерий. Методы их обнаружения.
  • 14. Рост и размножение бактерий. Кинетика размножения бактериальной популяции.
  • 15. Морфология и ультраструктура риккетсий. Морфология и ультраструктура хламидий. Патогенные виды.
  • 16. Морфология и ультраструктура спирохет. Классификация, патогенные виды. Методы выделения.
  • 17. Морфология и ультраструктура микоплазм. Патогенные для человека виды.
  • 18. Систематика и номенклатура вирусов. Принципы современной классификации вирусов.
  • 19. Эволюция и происхождение вирусов. Основные отличия вирусов от бактерий.
  • 20. Морфология, ультраструктура и химический состав вирусов. Функции основных химических компонентов вируса.
  • 21. Репродукция вирусов. Основные фазы репродукции вирусов. Методы индикации вирусов в исследуемом материале.
  • 22. Вирусологический метод диагностики. Методы культивирования вирусов.
  • 23. Культуры клеток. Классификация клеточных культур. Питательные среды для культур клеток. Методы индикации вирусов в культуре клеток.
  • 24. Морфология, ультраструктура и химический состав фагов. Этапы репродукции фагов. Различия между вирулентными и умеренными фагами.
  • 25. Распространение фагов в природе. Методы обнаружения и получения фагов. Практическое использование фагов.
  • 26. Бактериологический метод диагностики инфекционных заболеваний.
  • 27. Питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 28. Ферменты бактерий, их классификация. Принципы конструирования питательных сред для изучения ферментов бактерий.
  • 29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.
  • 30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.
  • 31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.
  • 32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.
  • 34. Взаимоотношения между микроорганизмами в ассоциациях. Микробы – антагонисты, их использование в производстве антибиотиков и других лечебных препаратов.
  • 35. Влияние на микробы физических, химических и биологических факторов.
  • 36. Стерилизация и дезинфекция. Методы стерилизации питательных сред и лабораторной посуды.
  • 38. Формы и механизмы наследственной изменчивости микроорганизмов. Мутации, репарации, их механизмы.
  • 43. Генетика вирусов. Внутривидовой и межвидовой обмен генетическим материалом.
  • 44. Основные группы антимикробных химиопрепаратов, применяемых в терапии и профилактики инфекционных болезней.
  • 45. Антибиотики. Классификация. Механизмы действия антибактериальных препаратов на микробы.
  • Репродукция вируса в клетке происходит в несколько фаз:

      Первая фаза - адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.

      Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

      Третья фаза - «раздевание» вирионов, освобождение нуклеиновой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем слияния оболочки вириона и клетки-хозяина. В этом случае вторая и третья фазы объединяются в одну.

    В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

      Репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

      Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу.

      Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

    РНК ->белок

      Рибовирусы с негативным геномом (минус- нитевые): грипп, корь, паротит, орто-, парамиксовирусы.

    (-)РНК -> иРНК -> белок (иРНК комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента - вирионная РНК-зависимая PHK-полимераза (в клетке такого фермента быть не может).

      Ретровирусы

    (-)РНК -> ДНК -> иРНК ->белок (и РНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента - РНК-зависимой ДНК-полимеразы (обратной транскриптазы или ревертазы)

      Четвертая фаза - синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

      Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

      Шестая фаза - выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

    Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

    Иной путь - интегративный - заключается в том, что после проникновения вируса в клетку и "раздевания" вирусная нуклеиновая кислота интегрирует в клеточный геном, то есть встраивается в определенном месте в хромосому клетки и затем в виде так называемого прови-руса реплицируется вместе с ней. Для ДНК- и РНК-содержащих вирусов этот процесс совершается по-разному. В первом случае вирусная ДНК интегрирует в клеточный геном. В случае РНК-содержащих вирусов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраивается в клеточный геном. Провирус несет дополнительную генетическую информацию, поэтому клетка приобретает новые свойства. Вирусы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся некоторые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус иммунодефицита человека, умеренные бактериофаги.

    Кроме обычных вирусов, существуют прионы - белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

    Методы индикации вирусов в исследуемом материале.

    О репродукции вирусов в культурах клеток судят по их цитопатическому действию (ЦПД), которое носит разный характер в зависимости от вида вируса, по бляшкообра- манию на клеточном монослое, покрытом тонким агаровым слоем, гемадсорбции эритроцитов и другим тестам.

    Таким образом, индикация вирусов производится микроскопически по наличию ЦПД, бляшкообразованию на клеточном монослое, гемадсорбции эритроцитов, добавленных к клеточной культуре вируса, а также в реакции гемагглютинации с исследуемым вируссодержащим материалом. Реакцию гемагглютинации вызывают вирусы, содержащие в составе своего капсида или суперкапсида гемагглютинин.

    Ретровирусы - оболочечные, сферические вирусы, которые выходят почкованием через клеточную мембрану хозяина. Они имеют приблизительно 100 нм в диаметре. Геном состоит из двух идентичных линейных односпиральных молекул РНК. Икосаэдральный нуклеокапсид содержит спиральный рибонуклеопротеид и окружен оболочкой состоящей из гликопротеидов и липидов.

    Характерная особенность ретровирусов - присутствие в вирионе необычного фермента - РНК зависимой ДНК полимеразы или обратной транскриптазы (отсюда имяretro, о значающее обратно). В отличие от классической транскрипции генетической информации от ДНК на РНК, фермент обратная транскриптаза готовит ДНК-копию РНК-генома ретровируса - первоначально РНК-ДНК гибрид, а затем его двухспиральную ДНК-форму. Двухспиральная ДНК-форма ретровирусного генома, называемаяпровирусом , и нтегрирует в ДНК инфицированной клетки-хозяина. Именно от провируса транслируются все ретровирусные белки. Заражение онкогенным ретровирусом не ведет к цитолизу или гибели инфицированных клеток, но провирус остается интегрированным в ДНК клетки-хозяина до конца жизни клетки и воспроизводится вместе с клеточным геномом при размножении клеток.

    В то время как все онкогенные РНК-содержащие вирусы принадлежат семейству Retroviridae, н е все ретровирусы онкогенны. СемействоRetroviridae классифицируется на три подсемейства.

    • 1. Oncovirinae включает все онкогенные РНК содержащие вирусы (прежде называемое онкорнавирус).
    • 2. Spumavirinaeсодержит неонкогенные "пенистые вирусы" (spuma = пена) вызывающие бессимптомные инфекции у нескольких видов животных и представляющие собой загрязняющие примеси первичных культур клеток, в которых они вызывают пенистое перерождение.
    • 3. Lentivirinaeвключает как вирусы вызывающие "замедленные инфекции" (lentus= медленно) у животных, так и вирусы человеческих и животных иммунодефицитов.

    Ретровирусы широко распространены; их находят почти у всех позвоночных, включая животных, птиц и рептилий. Основываясь на круге хозяев и типах вызываемых болезней, онкогенные Ретровирусы можно разделить на следующие группы:

    • 1. Вирусы лейкозно-саркоматозного комплекса птиц . Группа антигенно родственных вирусов, которые вызываютAvianлейкозы (вирусы лимфоматоза, миелобластоза и эритробластоза) или саркому у домашних птиц (вирус саркомы Рауса, ВСР).
    • 2. Вирусы мышиных лейкозов. Эта группа состоит из нескольких штаммов вирусов мышиной лейкемии и вирусов саркомы, названных по имени исследователи впервые описавших их (например Гросс, Френд, Молони, Раушер).
    • 3. Вирус опухоли молочной железы мышей. Этот вирус имеется в некоторых линиях мышей, у которых часто встречается рак молочной железы. Он известен как "молочный фактор" или "вирус Биттнера". Он размножается в молочной железе и передается от матери потомству через грудное молоко. Мыши могут быть заражены через рот, через подкожную или внутрибрюшинную инъекцию. Рак молочной железы развивается только у мышей восприимчивых линий после латентного периода в 6-12 месяцев.
    • 4. Вирусы лейкозов и сарком других животных. Большое количество вирусов было выделено из лейкозов и сарком различных видов животных - кошек, хомяков, крыс, морских свинок и обезьян.
    • 5. Т-лимфотропные вирусы человека (HTLV). Ретровирусы, названные "человеческие Т-лимфотропные вирусы" были выделены в 1980 из культур клеток от взрослых больных кожной T-клеточной лимфомой (грибковый микоз) и лейкемией (синдром Сезара) в США. Подобные вирусы были выделены от больных Т-клеточной лейкемией в Японии и Карибском бассейне. HTLV1-го типа имеются во всем мире, но распространенность заболеваний ограничена эндемичными областями. Помимо Т-клеточной лейкемии,HTLV-Iтакже связан с тропическим спастическим парапарезом, демиелинирующей болезнью. Вирус в основном инфицирует T4 (CD4) клетки. На инфицированных T-клетках обнаруживается большое количество рецепторов к ИЛ-2. Близко родственныеHTLV-IIтакже связаны с T-клеточными злокачественными новообразованиями. Известно, чтоHTLV-инфекция передается при переливании крови и другими способами введения лейкоцитов.

    Видовая специфичность. Ретровирусы обычно поражают только один вид хозяина, специфика обусловлена главным образом присутствием вирусных рецепторов на поверхности клетки-хозяина. В зависимости от их способности расти в клетках другого вида, ретровирусы делятся на 1) экотропные (размножаются только в клетках естественного хозяина);

    2) амфитропные (размножаются в клетках естественного и чужих видов); и 3) ксенотропные (размножаются только в клетках чужих видов, но не в клетках естественных хозяев).

    Передача вирусов. Возможны два типа передачи ретровирусов. Экзогенные ретровирусы распространяются горизонтально. Большинство онкогенных ретровирусов являются экзогенными. Эндогенные ретровирусы передаются вертикально от родителей потомствупровирусом, интегированным в геном половых клеток. Эндогенный ретровирусный провирус ведет себя как клеточный ген и подчинен регулирующему влиянию клетки-хозяина. Эндогенные ретровирусы обычно "молчащие", не трансформируют клетки и не вызывают какое-либо заболевание. Они могут быть обнаружены либо из-за "активации" после воздействия радиации или химикатов, или методом гибридизации нуклеиновой кислоты.

    Резистентность. Ретровирусы неустойчивы, инактивируются при 56 о С в течение 30 минут, слабыми кислотами, эфиром и формалином. Они устойчивы при - 30 о С

    Морфология. Ретровирусы существуют в виде четырех морфологических типов. Частицы типа А существуют только внутри клеток. Они имеют 60-90 нм в диаметре и содержат кольцевидный нуклеоид, окруженный мембраной. Они могут являться формой предшественника других типов. Типы B, C и D являются внеклеточными. Диаметр В частицы - 100-130nm, с эксцентрическим нуклеоидом и несут поверхностные шипики. Частицы С типа имеют центральный нуклеоид и гладкую поверхностную мембрану. ЧастицыDтипа еще не охарактеризованы. Они имеют эксцентрический нуклеоид и несут короткие поверхностные шипики.

    Большинство ретровирусов - частицы С типа. Вирус рака молочных железы мыши - частица типа B, а вирус рака молочной железы обезьян Мэзон-Пфайзера - частица типа D.

    Антигены. Имеется два типа антигенов - типоспецифические гликопротеидные антигены, расположенные на оболочке, и группо-специфические нуклеопротеидные антигены, расположенные в ядре вириона. Перекрестные реакции между поверхностными антигенами ретровирусов от различных видов хозяев не наблюдаются.

    Геномная структура. Ретровирусы имеют относительно простую геномную структуру.

    Провирус стандартного ретровируса (такого как недефектный вирус лейкоза птиц или мышей) состоит из трех генов, требуемых для вирусной репликации - gag,pol, иenv. Ген gag кодирует белки нуклеокапсида, которые являются группоспецифическими антигенами , ген pol кодирует РНК-зависимую ДНК-полимеразу, ген env кодирует гликопротеиды оболочки. С обоих концов провируса имеется длинный концевой повтор (LTR), непосредственно связывающийся с ДНК клетки-хозяина. LTR-участки обеспечивают контроль регуляции функции генов провируса.

    Некоторые ретровирусы (трансрегулирующие вирусы) типа HTLV или HIV несут четвертый ген tat после env гена. Это - трансактивирующий ген, который регулирует функцию вирусных генов.

    Стандартные онкогенные ретровирусы типа вирусов хронической лейкемии является медленными трансформирующими вирусами, т о есть они имеют низкий онкогенный потенциал и стимулируют злокачественное преобразование вообще только клеток крови после длительного латентного периода. Они не трансформирует культивируемые клетки. Они способны к нормальной репликации. Напротив, острые трансформирующие вирусы - высоко онкогенны и вызывают злокачественное развитие после короткого латентного периода в недели или месяцы. Они могут вызывать различные типы сарком, карцином, лейкозов и также трансформировать клетки в культуре. Однако, наиболее сильные трансформирующие вирусы неспособны нормально реплицироваться, потому что они содержат в своем геноме дополнительный ген, вирусный онкоген (V-onc ген) который заменяет некоторых из генов, существенных для репликации вируса. ТакиеV-onc вирусы могут репродуцироваться только при коинфекции со стандартным помощником ретровируса. Вирус саркомы Рауса, который несет онкогенsrc (произносится "сарк"), наиболее хорошо изученный среди острых трансформирующих вирусов, отличается способностью реплицироваться, то есть он может нормально реплицироваться, потому что обладает полным комплектом gag, pol, и env генов. Большинство острых трансформирующих вирусов дефектны в отношении репликации.

    Вирусы воспроизводят себе подобные частицы в таком огромном количестве и столь своеобразным способом, что это явление стали именовать репродукцией, так как здесь копируются молекулы нуклеиновых кислот и, согласно заключенной в них генетической информации, синтезируются вирусные белки.

    При большом разнообразии механизмов репродукции вирусов общим для всех видов является:

    1. источником мономеров для синтеза нуклеиновых кислот служат нуклеотиды клетки;
    2. источником мономеров для синтеза вирусных белков служат аминокислоты (аминоацил тРНК) клетки;
    3. синтез белков всех вирусов осуществляется на клеточных рибосомах;
    4. источник энергии для биосинтетических процессов при репродукции всех вирусов - аденазинтрифосфорная кислота (АТФ), вырабатываемая в митохондриях клетки;
    5. дисъюнктивный (разобщенный во времени и в пространстве) биосинтез структурных компонентов вирусов. Так, нуклеиновая кислота вируса может реплицироваться, например, в ядре клетки, вирусный белок синтезируется в цитоплазме, а сборка цельных вирионов или нуклеокапсидов может происходить на внутренней поверхности цитоплазматической мембраны. Наконец, сложный липопротеиновый суперкапсид может приобретаться вирусами в процессе почкования;
    6. репликацию нуклеиновых кислот вирусов осуществляют ферменты - полимеразы (ДНК-полимеразы и РНК-синтетазы), которые могут быть клеточными полимеразами, присутствующими в клетке до ее заражения вирусом, либо вирусспецифическими, появляющимися после заражения клетки вирусом, так как биосинтез их закодирован в структуре нуклеиновых кислот самих вирусов или они находятся в вирионе вируса;
    7. точность копирования молекул нуклеиновых кислот при их репликации обеспечивается матричным механизмом и принципом комплементарности.

    Взаимодействие вируса с клеткой хозяина - сложный и многостадийный процесс. В результате такого взаимодействия могут развиваться три основные формы клеточной инфекции: продуктивная, абортивная и интегративная.

    Продуктивная форма чаще носит литический характер, т. е. заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции инфицированных вирусных частиц. Гибель клетки могут вызвать следующие факторы: раннее подавление синтеза клеточных белков, накопление повреждающих клетку вирусных компонентов; повреждение лизосом и высвобождение их ферментов в цитоплазму. Такая форма инфекции наблюдается у многих вирусов.

    Абортивная форма не завершается образованием инфекционных вирусных частиц или они образуются в гораздо меньшем количестве, чем при продуктивной инфекции. Абортивная инфекция может возникать при следующих обстоятельствах: заражение чувствительных клеток дефектным вирусом, заражение чувствительных клеток в неразрешающих условиях, т. е. при резком изменении условий, при которых происходит инфекционный процесс, заражение нечувствительных клеток стандартным вирусом. В результате клетка либо погибает без продукции инфекционного вируса, либо инфекция прерывается на определенном этапе.

    Дефектным называется такой вирус, который не способен проявить все генетические функции, необходимые для образования инфекционного потомства. Существуют дефектные вирусы и дефектные вирусные частицы. Дефектными называют такие вирусы, которые репродуцируются лишь в присутствии вируса-помощника, например аденоассоциированный вирус (семейство парвовирусов), дающий потомство только в присутствии аденовируса - помощника. Дефектные вирусные частицы лишены части генетического материала (от 10 до 90 % генома). Дефектные частицы интерферируют при репродукции с инфекционными вирусными частицами и поэтому их называют дефектными интерферирующими частицами (ДИЧ). Попадая в клетку вместе с инфекционными вирусными частицами, они конкурируют с ними за факторы репродукции и препятствуют образованию инфекционного потомства. Большое количество ДИЧ проявляется при серийном пассивировании вируса с высокой множественностью заражения.

    Интегративная форма не приводит к гибели клетки. Нуклеиновая кислота вируса, встроенная в геном клетки-хозяина, функционирует как составная часть клеточного генома. Клетка может сохранить нормальные функции и при ее делении вирусные последовательности могут переходить в геном дочерних клеток. Интеграция может привести к неопластической трансформации клеток. Такие клетки приобретают способность к неограниченному делению.

    Интегративная форма инфекции возможна для нескольких семейств: ретровирусов, аденовирусов, вирусов герпеса, паповавирусов и др.

    Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события, которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и модификации вируса таким образом, что он способен вызвать инфекцию. Соответственно первая фаза включает три стадии.

    I. Адсорбция вируса на клетках.

    II. Проникновение в клетки.

    III. Раздевание вируса в клетке.

    Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя пять стадий:

    I. Транскрипция.

    II. Трансляция иРНК.

    III. Репликация генома.

    IV. Сборка вирусных компонентов.

    V. Выход вируса из клетки.

    Первая фаза репродукции . I. Адсорбция вирионов на поверхности клетки . Прикрепление вирусных частиц к поверхности клетки-хозяина - первая стадия инфекционного процесса. Начальный контакт вируса с клеткой происходит в результате случайного столкновения по типу броуновского движения.

    В основе адсорбции лежат два механизма.

    Первый из них - неспецифический. Определяется силами электростатического взаимодействия, возникающими между разнозаряженными группами, расположенными на поверхности клетки и вируса. В этом процессе участвуют заряженные положительно аминные группы вирусного белка и кислые фосфатные, сульфатные и карбоксильные группы клеточной поверхности, имеющие отрицательный заряд.

    Второй - специфический. Специфичность связи между вирусом и клеткой обусловлена комплементарными клеточными и вирусными рецепторами.

    Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Узнавание клеточных рецепторов вирусными белками (рецепторами), ведущее к прикреплению вирусной частицы к клетке, является высокоспецифическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обусловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками (рецепторами). Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компонент белков и липидов. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов, для рабдо — и реовирусов - также углеводный компонент в составе белков и липидов, для пикорна — и аденовирусов - белки, для некоторых вирусов - липиды. Специфические клеточные рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверхности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

    Прикрепление вирусной частицы к клеточной поверхности вначале происходит путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности (обратимая адсорбция). Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000.

    Количество специфических рецепторов на поверхности клетки колеблется между 10 4 и КР на одну клетку. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, вирусы полиомиелита адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов, как, например, рецепторы для ортомиксо — и ларамиксовирусов, представляющие собой сиалилсодержащие соединения, имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных. Вирусные ДНК и РНК обладают способностью заражать более широкий круг хозяев, чем вирусы. Максимальная скорость адсорбции вируса наблюдается лишь при определенном соотношении концентрации вируса и клеток, влиянии pH, температуры, ионного состава среды.

    Адсорбция вируса на клетках происходит в широком диапазоне температур. Она протекает нормально в присутствии катионов и подавляется веществами, несущими высокий отрицательный заряд (сульфатированные полисахариды, гепарин). Для ряда оболочечных вирусов известна обратная закономерность.

    Процесс адсорбции состоит из двух быстро следующих друг за другом периодов: обратимого и необратимого. Период обратимого прикрепления может закончиться десорбцией. При длительном контакте вируса с клеткой никакие воздействия не позволяют освободить адсорбированный вирус, наступает стадия необратимой адсорбции. Вирус ящура, например, адсорбируется клетками культуры почки свиней при 2-4 и 37 °С, однако при низкой температуре адсорбция вируса обратима и инфицирования клеток не происходит, так как вирус находится на поверхности клеток и легко может быть десорбирован раствором версена без нарушения целостности клеток, тогда как при 37 °С через 80-90 мин наступала полная необратимая адсорбция вируса. Количество адсорбированного вируса и число инфицированных клеток в основном зависят от множественности заражения и продолжительности адсорбции.

    Адсорбированные вирусные частицы могут иметь различную судьбу: большая часть их элюируется, при этом они повреждаются, так как теряют способность к реадсорбции другими клетками и не инфицируют их; другая часть вирусных частиц проникает в клетку и подвергается дезинтеграции; небольшая часть инфекционных вирусных частиц, связанных с клеткой, остается интактной.

    Прикрепительные белки могут находиться в составе уникальных органелл, таких, как структуры отростка у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электронном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные структуры белковых субъединиц на поверхности вирусных мембран, как, например, шипы у оболочечных вирусов, «корону» у коронавирусов.

    Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав суперкапсида и представлены множественными молекулами. Например, у вируса леса Семлики (α-вирус) имеется 240 молекул гликопротеида в одном вирионе, у вируса гриппа - 300-450 гемагглютинирующих субъединиц, у аденовируса - 12 фибров.

    Спектр чувствительности клеток к вирусам в значительной степени определяется наличием соответствующих рецепторов. Прикрепление вируса к клетке - непременное, но недостаточное условие для инфицирования, которое определяется прохождением последующих стадий репродукции вируса.

    II. Проникновение вируса в клетку . В настоящее время известно два механизма проникновения вируса в клетку: путем рецепторного эндоцитоза и путем слияния вирусной и клеточной мембран. Оба эти механизма не исключают, а дополняют друг друга.

    Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, на дне которых находятся специальные рецепторы. Ямки обеспечивают быструю инвагинацию и образование внутриклеточных вакуолей (за 1 мин образуется более 2 тыс. вакуолей), которые сливаются с цитоплазматическими вакуолями, образуя рецептосомы, а они могут сливаться с лизосомами. Эндоцитоз обеспечивает внутриклеточный транспорт вириона в составе вакуоли, освобождая вирусную частицу в соответствующих внутриклеточных участках. Так, например, ядерные вирусы попадают в ядро, а реовирусы - в лизосомы. Большинство вирусов животных проникает в клетку путем эндоцитоза.

    Слияние вирусных и клеточных мембран . У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка путем слияния с липидами клеточной мембраны, в результате вирусная липопротеидная оболочка интегрирует с клеточной мембраной.

    У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате внутренний компонент проходит через мембрану и вовнутрь клетки проникает только нуклеопротеид вириона. При данном способе проникновения функционально активный вирусный нуклеопротеид освобождается из вириона в период его прохождения внутрь клетки через плазматическую мембрану, т. е. одновременно происходит проникновение и «раздевание» вириона. Белком слияния у вирусов является один из поверхностных белков, так, у парамиксовирусов это белок (F-белок), у вируса гриппа функцию белка слияния выполняет малая гемагглютинирующая субъединица (НА2).

    Большинство вирусов вызывает слияние мембран при низком значении pH - от 5,0 до 5,75.

    III. Раздевание - депротеинизация вируса . Проникшие в клетку вирусные частицы должны раздеться для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутренний компонент вируса, который способен вызвать инфекционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде случаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

    Конечными продуктами раздевания являются сердцевины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а связанные с внутренним вирусным белком. Например, конечный продукт раздевания пикорнавирусов - РНК, ковалентно связанная с белком VPg, конечный продукт раздевания аденовирусов, вируса полиномы и SV40 - ДНК, ковалентно связанная с одним из внутренних вирусных белков.

    В ряде случаев способность вирусов вызвать инфекционный процесс определяется возможностью их раздевания в клетке данной системы. Тем самым эта стадия является одной из ограничивающих инфекцию.

    Раздевание ряда вирусов происходит в специализированных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

    Раздевание и внутриклеточный транспорт - взаимосвязанные процессы: при нарушении правильного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

    Раздевание вирусной частицы осуществляется постепенно в результате серии последовательных реакций. Например, в процессе раздевания пикорнавирусы проходят ряд стадий с образованием промежуточных субвирусных частиц с размерами от 156S до 12S. Раздевание аденовирусов происходит в цитоплазме и ядерных порах и имеет по крайней мере три стадии: 1) образование субвирусных частиц с большей плотностью, чем вирионы; 2) образование сердцевин, в которых отсутствует 3 вирусных белка; 3) образование ДНК-белкового комплекса с терминальным белком.

    Вирусы оспы раздеваются в две стадии: на первой - ферменты хозяина удаляют наружное покрытие, а на второй - для освобождения вирусной ДНК из сердцевины требуется участие продуктов вирусных генов («раздевающий фермент»), синтезированных после заражения.

    Вторая фаза репродукции . I. Транскрипция . Это переписывание информации с ДНК на РНК по законам генетического кода. Осуществляется с помощью специального фермента (РНК-полимеразы), который связывает нуклеотиды путем образования 3’-5′-фосфодиэфирных мостиков. При инициации транскрипции РНК-полимераза связывается со специальным участком ДНК (промотором), удвоенные спирали ДНК разъединяются и функционируют как матрицы, к которым присоединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин с тимином, урацил с аденином, гуанин с цитазином и цитазин с гуанином). Таким образом, происходит постепенное удлинение (элонгация) цепи НИК. Терминация (прекращение роста) цепи ГПК происходит на специфических участках ДНК, называемых терминаторами. При этом процессе принимают участие и специальные белки.

    Стратегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке:

    ДНК →(транскрипция)→ РНК →(трансляция)→ белок.

    ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся папова-, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточные ферменты, находящиеся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом - ДНК-полимеразой, которая проникает в клетку в составе вириона. К этим вирусам относятся вирусы оспы и иридовирусы.

    РНК → белок.

    К этой группе вирусов относятся пикорна-, тога-, коронавирусы. У них нет необходимости в акте транскрипции для синтеза вирусспецифических белков. Поэтому транскрипцию как самостоятельный процесс у этих вирусов не выделяют.

    Б. У вирусов, геном которых не может выполнять функцию иРНК (минус-нитевые вирусы). В клетке синтезируется комплементарная геному РНК, которая и является информационной. Передача генетической информации у этих вирусов осуществляется по формуле:

    РНК → РНК → белок.

    У этих вирусов транскрипция выделена как самостоятельный процесс в инфекционном цикле. К ним относятся две группы вирусов животных:

    • вирусы, геном которых представлен односпиральной РНК: ортомиксо-, парамиксо-, рабдо-, буньявирусы;
    • вирусы, геном которых представлен двуспиральной РНК. Среди вирусов животных к ним относятся реовирусы.

    В клетке нет фермента, который может полимеризовать нуклеотиды на матрице РНК. Эту функцию выполняет вирусспецифический фермент - РНК-зависимая PHK-полимераза, или транскриптаза, которая находится в составе вирионов и вместе с ними проникает в клетку.

    В. Среди РНК-содержащих вирусов животных есть семейство ретровирусов, которые имеют уникальный путь передачи генетической информации. РНК этих вирусов переписывается на ДНК, ДНК интегрирует с клеточным геномом и в его составе переписывается на РНК, которая обладает информационными функциями. Путь передачи генетической информации в этом случае осуществляется по более сложной формуле: РНК → ДНК → PHК → белок

    В составе этих вирусов есть уникальный вирусспецифический фермент, который переписывает РНК на кДНК. Этот процесс называется обратной транскрипцией, а фермент - обратная транскриптаза, или ревертаза. Тот же фермент синтезирует нить ДНК на матрице ДНК. Двуспиральная ДНК после замыкания в кольцо интегрирует с клеточным геномом, и транскрипцию интегрированной ДНК в составе клеточных геномов осуществляет клеточная ДНК-зависимая РНК-полимераза.

    Транскрипция вирусного генома строго регулируется на протяжении инфекционного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипции: сверхранний, ранний и поздний. К ним относятся вирусы оспы, герпеса, папова-, адено — и иридовирусы. В результате сверхранней и ранней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома - поздние гены с образованием поздних и PHК. Количество поздних генов обычно превышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков (ферментов и регуляторов транскрипции) и репликации вирусного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преобладанием транскрипции поздних генов.

    Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК - полисомам.

    Продуктом сверхранней транскрипции вирусов герпеса являются α-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих β-белки. В свою очередь, β-белки включают транскрипцию последней группы поздних генов, кодирующих γ-белки. Такой тип регуляции получил название «каскадный».

    II. Трансляция . Эго - процесс перевода генетической информации, содержащейся в иРНК на специфическую последовательность аминокислот в синтезируемых вирусспецифических белках. Синтез белка в клетке происходит в результате трансляции иРНК на рибосомах. В рибосомах идет слияние потока информации (в иРНК) с потоком аминокислот, которые приносят транспортные РНК (тРНК). В клетке существует большое количество разнообразных тРНК. Для каждой аминокислоты должна быть своя тРНК.

    Молекула тРНК представляет собой односпиральную РНК со сложной структурой в виде кленового листа.

    Связывание конкретной тРНК и аминокислоты осуществляет фермент аминоацилсинтетаза. Один конец тРНК связывается с аминокислотой, а другой - с нуклеотидами иРНК, которым они комплементарны. Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», а комплементарные кодону три нуклеотида на тРНК называются «антикодоном».

    Процесс транскрипции состоит из трех фаз: инициации элонгации, терминации.

    Инициация трансляции - наиболее ответственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» (кэп) на 5′-конце и скользит к 3′-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторными кодонами являются кодоны АУГ (аденин, урацил, гуанин), кодирующие метионин. С метионина начинается синтез всех полипептидных цепей. Специфическое узнавание рибосомой вирусной и РНК осуществляется за счет вирусспецифических инициаторных факторов.

    Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необходимые для начала трансляции. Это - несколько молекул белка, которые называются «инициаторные факторы». Их, по крайней мере, три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК. В результате формируется комплекс, необходимый для инициации трансляции, который называется «инициаторным комплексом». В инициаторный комплекс входят: иРНК; малая рибосомальная субъединица; аминоацил-тРНК, несущая инициаторную аминокислоту; инициаторные факторы; несколько молекул ГТФ (гуанозинтрифосфат).

    В рибосоме осуществляется слияние потока информации с потоком аминокислот. Вхождение аминоацил-тРНК в А-центр большой рибосомальной субъединицы является следствием узнавания, а ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр (П-центр), и ее аминокислота присоединяется к инициаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспорте специфических аминокислот. На ее место из A-центра в П-центр перебрасывается новая тРНК, и образуется новая пептидная связь. В A-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК, и происходит присоединение новых аминокислот к растущей полипептидной цепи.

    Элонгация трансляции - процесс удлинения, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации. Часто иРНК функционирует одновременно на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, кодируемую данной иРНК.

    Терминация трансляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК (УАА, УГА, УАГ). Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полирибосомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

    Каждая и PHК функционирует на нескольких рибосомах. Группу рибосом, работающих на одной молекуле иРНК, называют полирибосомой или полисомой. Полисомы могут состоять от 4-6 до 20 и более рибосом.

    Вирусспецифические полисомы могут быть как свободными, так и связанными с мембранами. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синтезируются на полисомах, связанных с мембранами.

    Поскольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков:

    первый - иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функционально активные белки;

    второй - иРНК транслируется с образованием зрелых белков или белков, которые лишь незначительно модифицируются после синтеза.

    Первый способ трансляции характерен для РНК-содержащих плюс-нитевых вирусов - пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «конвейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков - многоступенчатый процесс, осуществляемый как вирусспецифическими, так и клеточными протеазами.

    Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК-содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избирательной транскрипции одного участка генома (гена). Однако эти вирусы широко используют механизм посттрансляционного нарезания белка.

    В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, зрелые функционально активные белки часто неидентичны их вновь синтезированным предшественникам. Широко распространены такие посттрансляционные ковалентные модификации, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

    Гликозилирование . В составе сложно устроенных PHК — и ДНК-содержащих вирусов имеются белки, содержащие ковалентно присоединенные боковые цепочки углеводов, - гликопротеиды. Гликопротеиды расположены в составе вирусных оболочек и находятся на поверхности вирусных частиц.

    Гликозилирование полипептидов - сложный многоступенчатый процесс, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый углеводный остаток присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликозилирования происходят путем последовательного присоединения углеводных остатков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Углеводные остатки присоединяются по одному, и только при инициации синтеза олигосахаридной цепи переносится «блок». Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы.

    Гликозилирование влияет на транспорт, более того, транспорт неразрывно связан для гликопротеидов со стадийным гликозилированием. Убедительным доказательством этого служит влияние на вирусную репродукцию ингибиторов гликозилирования; они полностью подавляют транспорт полипептидов, не нарушая и не ингибируя их синтеза.

    При подавлении гликозилирования соответствующими ингибиторами (аналоги сахаров типа 2-дезоксиглкжозы, антибиотик туникамицин) блокируется сборка вирионов миксо-, рабдо-, α-вирусов или образуются неинфекционные вирионы вирусов герпеса и онковирусов.

    Сульфирование . Некоторые белки сложно устроенных РНК — и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с углеводными остатками гликопротеида.

    Ацилирование . Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок HN вируса ньюкаслской болезни и др.) содержат ковалентно связанные 1-2 молекулы жирных кислот.

    Нарезание . Многие вирусные белки, и в первую очередь гликопротеиды, приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функциональных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида (Е2 и ЕЗ) вируса леса Семлики), либо с образованием одного функционально активного белка и неактивного фермента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеиды, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусами способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

    Фосфорилирование . Фосфопротеиды содержатся практически в составе всех вирусов животных - РНК — и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. С процессом фосфорилирирования связан механизм активного действия интерферона.

    Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных и PHК, специфическом узнавании вирусных иРНК рибосомой, белок-нуклеиновом и белок-белковом узнавании на стадии сборки вирусных частиц.

    III. Репликация . Это - синтез молекул нуклеиновой кислоты, гомологичных геному.

    Различные вирусы имеют разные типы вирусного генома. Так, у ДНК-содержащих вирусов различают: двуспиральную линейную ДНК (адено-, герпес-, поксвирусы;), двуспиральную кольцевую ДНК (паповавирусы); односпиральная линейная ДНК (парвовирусы). У РНК-содержащих вирусов различают: двуспиральную сегментированную РНК (реовирусы); односпиральную плюсРНК (пикорна-, кальци-, тога-, флави-, коронавирусы); односпиральную минусРНК (ортомиксо-, парамиксо-, рабдо-, фило-, бунья — вирусы); односпиральную плюсРНК-матрицу для синтеза ДНК-провируса (ретровирусы). Особенности механизма репликации вирусов зависят от типа вирусного генома.

    Репликация вирусов в двуспиральной ДНК сходна с репликацией клеточной ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5′-конца к 3′-концу. Репликацию осуществляют ДНК-полимеразы. Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити.

    При репликации вирусов с односпиральной ДНК происходит образование двуспиральных форм, которые представляют собой промежуточные репликативные формы, на минус-нитях которых синтезируются дочерние плюс-нити ДНК.

    У вирусов, геном которых представлен односпиральной РНК, ее репликация происходит по следующей схеме: на вирионной РНК синтезируется комплементарная ей РНК (образуется репликативная форма РНК), затем на комплементарной РНК синтезируется комплементарная ей, но идентичная исходной вирусная РНК.

    В клетках нет ферментов, способных осуществлять репликацию РНК, поэтому ферменты, участвующие в репликации, всегда вирусспецифические.

    Репликация двуспиральных вирусных РНК происходит следующим образом: на минус-нити геномной двуспиральной РНК синтезируются односпиральные плюс-нити, которые являются и PH К и матрицей для синтеза минус-нитей, в результате образуются двуспиральные вирусные РНК.

    Репликация односпиральной РНК ретровирусов происходит с участием фермента обратной транскриптазы. Вначале на вирусной РНК синтезируется комплементарная ей минус-нить ДНК, а затем (после разрушения РНК) на ней синтезируется плюс-нить ДНК. Двуспиральная ДНК интегрирует в хромосому клетки. Вирусспецифическая ДНК, встроенная в клеточный геном, транскрибируется с образованием вирусной РНК, которая вначале выполняет функции иРНК, направляя синтез вирусспецифических белков, а затем соединяется с ними, формируя новое поколение вирионов.

    Синтез РНК может осуществляться по одному из двух механизмов: 1) консервативному, при котором полинуклеотидные цепи, входящие в состав репликативной формы РНК, сохраняются (консервируются) и не переходят в односпиральную форму; 2) образование плюс-нитей может происходить асимметрическим полуконсервативным путем, когда вновь строящаяся плюс-нить вытесняет ранее синтезированную плюс-нить из репликативной формы РНК.

    IV. Сборка вирусных частиц . Синтез компонентов (нуклеиновых кислот и белков) вирусных частиц в клетке разобщен и может протекать в разных структурах ядра и цитоплазмы. Как только их концентрация достигнет определенного уровня, начинается сборка вирионов. При таком дисъюнктивном способе репродукции образование вирусных частиц возможно лишь при специфическом узнавании вирусных нуклеиновых кислот и белков и самопроизвольного их соединения друг с другом, т. е. вирусные компоненты способны к самосборке в результате гидрофобных, ионных, водородных связей и стерического соответствия.

    Разнообразие структуры вирусов отражается на способе их формирования и выходе из клетки. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато - сначала формируются нуклеокапсиды, или сердцевины, с которыми взаимодействуют белки наружных оболочек. Сборка нуклеотидов, сердцевин, провирионов и вирионов происходит в специальных структурах клетки («фабриках»).

    Различают две стратегии, используемые вирусами при сборке, созревании и выходе из зараженной клетки. Первая заключается в сборке и созревании вирионов внутри клетки (пикорна-, адено-, реовирусы и др.). Вторая состоит в сочетании завершающей стадии сборки вириона с выходом его из зараженной клетки. Она используется обычно вирусами, имеющими оболочку (тога-, ретро-, герпесвирусы и др.). Образование зрелых вирионов у оболочечных вирусов осуществляется при почковании их нуклеопротеидов через модифицированные участки цитоплазматических или ядерных (герпесвирусы) мембран, в которых клеточные белки заменены вирусспецифическими. Во время этого процесса вновь образовавшийся вирион отпочковывается от клетки.

    Дозревание ретровирусов происходит после отпочковывания от плазматической мембраны клетки.

    Число инфицированных вирусных частиц, образуемых в одной клетке, зависит от типа вируса, вида клеток, и количество их варьирует очень широко. Считают, что на долю вирусспецифических продуктов приходится от 0,1 до 5 % массы клетки животного, а на бактериофаги - до 40 % массы клетки хозяина. В инфицированных клетках вирусные нуклеиновые кислоты и вирусспецифические белки синтезируются в значительно большем количестве, чем включаются в вирионы.

    V. Выход вирусных частиц из клетки . Существует два способа выхода вирусного потомства из клетки: путем взрыва и путем почкования. Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы оказываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортироваться на клеточную поверхность до гибели клетки.

    Выход из клетки путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

    Типы взаимодействия вируса с клеткой. Фазы репродукции вирусов.

    Различают три типа взаимодействия вируса с клеткой :

    Продуктивный тип - завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

    Абортивный тип - не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

    Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

    Репродукция вирусов:

    1.адсорбция вируса на клетке- прикрепления вирусов к поверхности клетки. Вирус адсорбируется на определенных участках клеточной мембраны - так называемых рецепторах.;

    2. проникновение вируса в клетку -два способа: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки;

    3.«раздевание» вируса - удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.;

    3.биосинтез вирусных компонентов в клетке - Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

    Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации;

    4. формирование вирусов - Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

    1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

    2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

    3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

    4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы);

    5. выход вирусов из клетки- Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки.

    Жизнедеятельность бактерий характеризуется ростом - фор­мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размноже­нием - самовоспроизведением, приводящим к увеличению ко­личества бактериальных клеток в популяции.

    Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Актиномицеты, как и грибы, могут раз­множаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтези­рующихся перегородок деления внутрь клетки, а грамотрицательные - путем перетяжки, в результате образования гантелевид-ных фигур, из которых образуются две одинаковые клетки.

    Делению клеток предшествует репликация бактериальной хро­мосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной ни­тью), приводящая к удвоению молекул ДНК бактериального ядра - нуклеоида.

    Репликация ДНК происходит в три этапа: инициация, элон­гация, или рост цепи, и терминация.

    Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питатель­ной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и пре­кращению роста бактерий. Культивирование бактерий в такой си­стеме называют периодическим культивированием, а культуру - периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивиро­вание называется непрерывным, а культура - непрерывной.

    При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов :

    1. лаг-фаза;

    2. фаза логарифмического роста;

    3. фаза стационарного роста, или максимальной концентрации

    бактерий;

    4. фаза гибели бактерий.

    Лаг-фаза - период между по­севом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4-5 ч. Бактерии при этом увеличиваются в раз­мерах и готовятся к делению; нарастает количество нуклеино­вых кислот, белка и других компонентов.

    Фаза логарифмического (экспоненциального) роста является периодом ин­тенсивного деления бактерий. Продолжительность ее около 5- 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин. Во время этой фазы бактерии наиболее ра­нимы, что объясняется высокой чувствительностью компонен­тов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.

    Затем наступает фаза стационарного роста , при которой количество жиз­неспособных клеток остается без изменений, составляя макси­мальный уровень (М-концентрация). Ее продолжительность вы­ражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.

    Завершает процесс роста бактерий фаза гибели , характеризующаяся отмиранием бак­терий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжи­тельность ее колеблется от 10 ч до нескольких недель. Интен­сивность роста и размножения бактерий зависит от многих фак­торов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

    Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолирован­ные колонии округлой формы с ровными или неровными кра­ями (S- и R-формы), различной консистенции и цве­та, зависящего от пигмента бактерий.

    Пигменты, растворимые в воде, диффундируют в питатель­ную среду и окрашивают её. Дру­гая группа пигментов нерастворима в воде, но растворима в орга­нических растворителях. И, нако­нец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

    Наиболее распространены среди микроорганизмов такие пиг­менты, как каротины, ксантофиллы и меланины. Меланины яв­ляются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и пероксидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают ан­тимикробным, антибиотикоподобным действием.

    Таксономия, классификация

    ПАРАМИКСОВИРУСЫ

    Парамиксовирусы (семейство Paramyxoviridae от лат. para - около, myxa - слизь ) - семейство РНК-содержащих вирусов. Семейство содержит респираторно-синтициальный вирус, вирусы кори, паротита, парагриппа, передающиеся респираторным механизмом. В семейство Paramyxoviridae в соответствии с общепринятой клас­сификацией вирусов до последнего времени входили три рода: Paramyxovirus, Morbillivirus, Pneumovirus. Но недавно в классифика­цию внесены изменения.

    Семейство Paramyxoviridae разделено на два подсемейства, уве­личено количество родов:

    1. Подсемейство Paramyxovirinae включает роды Respirovirus (прежнее название - Paramyxovirus), Morbillivirus и Rubulavirus (новый род);

    2. Подсемейство Pneumovirinae содержит роды Pneumovirus и Metapneumovirus.

    2. Морфология, размеры, особенности генома

    Строение вириона. Все представители семейства Paramyxoviridae имеют сходное строение. Это сложный РНК-геномный вирус круп­ных размеров. Типовым представителем является вирус Сендай (он патогенен для мышей), и ультраструктура парамиксовирусов рассматривается на этом примере (рис.5). Вирион имеет округлую форму, его диа­метр 150-300 нм. Снаружи находится липопротеиновый суперкапсид с множеством шипиков двух типов на поверхности (рис.4). Изнутри к суперкапсиду прилегает слой матриксного М-белка. В центральной части вириона находится тяж нуклеокапсида (РНП) со спиральным типом симметрии, свернутый в рыхлый клубок.

    Рис. 4 Схема парамиксовируса Рис. 5 Электоронограмма вируса Сендай

    Геном представлен крупной молекулой линейной однонитчатой минус-РНК, кодирующей 7 белков. Среди них основной капсидный белок NP, белки полимеразного комплекса L и Р, неструктурный С бе­лок (все они входят в состав нуклеокапсида), а также М-белок и по­верхностные гликопротеины. Это прикрепительные белки и белок слияния (F-белок). Прикрепительные белки образуют шипики одного типа, а F-белок - шипики другого типа. У разных парамиксовирусов прикрепительные белки представлены: HN (гемагглютинин-нейраминидаза), Н (гемагглютинин) или G-белком.

    Парагрипп. По антигенам вирусных белков HN, NP, F различают 4 основных серотипа вирусов парагриппа. Типы 1, 2, 3 перекрестно реагируют с антителами к вирусу паротита. Вирус 4 типа отличается и имеет 2 подтипа (таким образом, предпологается наличие 5 типов вирусов парагриппа). Все вирусы парагриппа имеют HN - белок и поэтому проявляют гемагглютинирующую и нейраминидазную активность. Вирус парагриппа 1, 2 типа агглютинирует эритроциты кур, вирус парагриппа 3 агглютинирует только эритроциты морских свинок.



    Парамиксовирус (рис. 5) связывается гликопротеинами (HN, H, или G) оболочки с поверхностью клетки (1). F-белок обеспечивает слияние оболочки вируса с плазматической мембраной клетки, без образования эндосом. Репликация генома сходна с репликацией минус РНК-геномных вирусов: РНК-полимераза вносится в клетку с нуклеокапсидом вируса. Геном транскрибируется в отдельные иРНК (2) для каждого белка и полноценную плюс-матрицу (3) для геномной РНК. Новые геномы взаимодействуют с L-, P- и NP-белками, образуя нуклеокапсиды. Синтезированный матриксный белок перемещается к внутреннему слою мембраны клетки. Предшественники гликопротеиновых шипов оболочки синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума (ЭР). Они гликозилируются, перемещаясь через ЭР и аппарат Гольджи (АГ), встраиваясь в мембрану клетки. Нуклеокапсид связывается с матриксным белком и гликопротеинмодифицированной мембраной (суперкапсидом). Вирионы выходят из клетки (4)почкованием.

    Рис. 5 Репродукция парамиксовирусов

    Парамиксовирусы обладают способностью с помощью F-белка переходить в соседние клетки, вызывая их слияние. При этом образу­ются многоядерные гигантские клетки - синцитии (симпласты). Такой механизм позволяет вирусам распространяться непосредственно из клетки в клетку, избегая действия вируснейтрализующих антител. Способность к симпластооброзаванию - характерный признак парамиксовирусов.