Когда прохождение венеры по диску солнца. Прохождение венеры по диску солнца и определение расстояния между ними. Относительные размеры орбит Венеры и Земли

Наблюдатели по всему миру (по крайней мере, на территории тех стран, над которыми небо было ясным) смогли наблюдать вчера редкое и интересное космическое явление – прохождение (транзит) Венеры по диску Солнца. Это очень редкое явление, и в следующий раз оно произойдет через 105 лет. Во время транзита планета Венера находится точно между Солнцем и Землёй, закрывая собой крошечную часть солнечного диска. Ученые использовали шесть часов, которые продолжался транзит Венеры, максимально-эффективно, поскольку были проведены эксперименты, которые помогают совершенствовать методы наблюдения и измерения далеких экзопланет. Это явление можно безопасно наблюдать, принимая те же меры предосторожности, что и при частном солнечном затмении. Наблюдение яркого солнечного диска без защиты глаз может серьёзно или даже полностью повредить сетчатку глаза.

Сегодня мы предлагаем вашему вниманию подборку фотографий, посвященных прохождению Венеры по диску Солнца и сделанных в разных уголках мира.

1. Венера движется на фоне солнечного диска. Это изображение, полученное с помощью спутника Hinode, принадлежащего Японии, 6 июня 2012 года. Следующий транзит Венеры по диску Солнца произойдет в 2117 году.

2. Подробная информация об относительных размерах и расстояниях, связанных с транзитом Венеры по диску Солнца.

3. Планета Венера, которая кажется просто черной точкой, на солнечном диске над Башней победы в Chittorgarh, Индия, фотография сделана 6 июня 2012 года.

4. Девочка использует специальное стекло для того, чтобы следить за прохождением Венеры по солнечному диску в Медельин, Колумбия, фотография сделана 5 июня 2012 года.

5. Астроном-любитель наблюдает за прохождением Венеры по солнечному диску на поляне, в роще возле Jena, Германия, фотография сделана 6 июня 2012 года.

7. Прохождение Венеры по солнечному диску над Нью-Дели, небо затянуто тучами, фотография сделана 6 июня 2012 года.

8. Венера, кажущаяся черной точкой на солнечном диске, во время транзита Венеры по Солнцу над Амманом, Иордания, фотография сделана 6 июня 2012 года.

9. Джош Ромни и его супруга Аманда Ромни наблюдают за прохождением Венеры по солнечному диску за пределами Солт-Лейк-Сити, штат Юта, 5 июня 2012 года.

10. Самолет на фоне солнечного диска, во время транзита Венеры по Солнцу над Хантингтон-Бич, Калифорния, 5 июня 2012 года.

11. В обсерватории Wilhelm-Föster Observatory в Берлине, женщина указывает на тень Венеры на проецируемом изображении Солнца, фотография сделана 6 июня 2012 года.

12. Изображение, полученное с орбитальной обсерватории солнечной динамики НАСА демонстрирует диск Солнца во время транзита Венеры, 5 июня 2012 года. Также видны многочисленные пятна на Солнце.

13. Транзит Венеры по солнечному диску, озеро Great Salt Lake неподалеку от Солт-Лейк-Сити, штат Юта, фотография сделана 5 июня 2012 года.

14. Птица собирается приземлиться на один из шпилей Тадж-Махала во время транзита Венеры по солнечному диску, вид из из Агре, Индия, фотография сделана 6 июня 2012 года.

15. Любители астрономии из Гонконга используют специальные фильтры для телескопов и биноклей, чтобы наблюдать за прохождением Венеры по солнечному диску над заливом Виктория в Гонконге, фотография сделана 6 июня 2012 года.

16. Сверхвысокой четкости фотография Венеры во время прохождения планеты по солнечному диску, полученная с помощью Helioseismic and Magnetic Imager, находящегося на борту орбитальной обсерватории солнечной динамики НАСА.

17. Силуэт Венеры виден между Землей и Солнцем, фотография сделана с орбитальной обсерватории солнечной динамики НАСА, 5 июня 2012 года.

18. Жители Сараево используют телескоп, чтобы следить за прохождением Венеры по солнечному диску, фотография сделана 6 июня 2012 в окрестностях столицы Боснии.

19. Солнце прячется за облаками над Балтийским морем, во время транзита Венеры по солнечному диску над Колобжег, Польша, фотография сделана 6 июня 2012 года.

20. Человек фотографирует прохождение Венеры по солнечному диску через целостат, часть солнечного телескопа в обсерватории Гриффита в Лос-Анджелесе, фотография сделана 5 июня 2012 года.

21. Посетители парка Edgewater любуются закатом солнца во время прохождения Венеры по солнечному диску в Кливленде, штат Огайо, фотография сделана 5 июня 2012 года.

22. Люди наблюдают за прохождением Венеры по солнечному диску со смотровой площадки Планетария Гамбурга, в Гамбурге, Германия, фотография сделана 6 июня 2012 года.

23. Прохождение Венеры по солнечному диску, в Нью-Дели, где небо было затянуто облаками, фотография сделана 6 июня 2012 года.

24. Прохождение Венеры по солнечному диску, вид из Лос-Анджелеса, Калифорния, фотография сделана 5 июня 2012 года.

25. Астроном Раминдер в обсерватории Макмиллана в Ванкувере, Британская Колумбия, фотография сделана 5 июня 2012 года. К сожалению, облачность помешала получить хорошие снимки прохождения Венеры по солнечному диску.

26. Прохождение Венеры по солнечному диску, изображение получено благодаря орбитальной обсерватории солнечной динамики, принадлежащей НАСА, фотография сделана 5 июня 2012 года.

27. Прохождение Венеры по солнечному диску над Балтийским морем в Колобжег, Польша, 6 июня 2012 года.

28. Любителям астрономии используют защитные очки для наблюдения за прохождением Венеры по солнечному диску в Калькутте, Индия, фотография сделана 6 июня 2012 года.

29. Темное пятно Венеры едва видно во время транзита по заходящему солнцу над Тихим океаном, вид из Encinitas, Калифорния, фотография сделана 5 июня 2012 года.

6 июня с 02.30 до 09.00 по московскому времени во всем мире можно наблюдать очень редкое явление - прохождение Венеры по диску Солнца . В эти моменты планета Венера находилась точно между Солнцем и Землей, закрывая собой крошечную часть солнечного диска.

Последний раз прохождение Венеры по диску Солнца наблюдалось 8 июня 2004 года. Следующий аналогичный парад планет ожидается только в 2117 и 2125 годах. (Фотографии NASA | SDO).

Продолжительность прохождения Венеры составляет всего несколько часов и является одним из самых редких предсказуемых астрономических явлений .

При параде планет Венера выглядит с Земли как маленькое черное пятнышко, перемещающееся по Солнцу. Такие прохождения похожи на , когда закрывается Луной.

Диаметр Венеры почти в 4 раза больше, чем у Луны, и во время прохождения она выглядит примерно в 30 раз меньше Солнца, так как находится значительно дальше от Земли, чем Луна.



Древние греки, египтяне и жители Вавилона знали о Венере и наблюдали за ее движением. Однако, древние греки считали, что утренние и вечерние появления Венеры представляют разные «звезды»: Геспер - вечерняя звезда, а Фосфор - утренняя звезда. Считается, что именно пифагорейцы первыми выяснили, что это один и тот же объект - планета Венера.

К сожалению, прохождение Венеры по диску Солнца сложно наблюдать невооруженным взглядом или просто через затемненное стекло. Нужен телескоп с защитным фильтром. Германия, 6 июня 2012:

(Фото НАСА):

Последующие прохождения Венеры по диску Солнца произойдут лишь в 2117 и 2125 годах.

Полный путь Венеры по диску Солнца:

(Фото НАСА):

(Фото НАСА):

Точка-Венера на диске Солнца. Над Балтийским морем в Польше, 6 июня 2012. (Фото Michael Probst | AP):

Фотография на телефон на память. Изображение получено через целостат - вспомогательное приспособление на телескопе, Лос-Анджелес 5 июня 2012. (Фото Jae C. Hong | AP):

(Фото НАСА):

(Фото НАСА):

Прохождение Венеры по диску Солнца в 2012 году. Следующее будет через 105 лет...(Фото Reuters | JAXA):

Наблюдение Венеры

Вид с Земли

Венеру легко распознать, так как по блеску она намного превосходит самые яркие звёзды. Отличительным признаком планеты является её ровный белый цвет. Венера, так же как и Меркурий, не отходит на небе на большое расстояние от Солнца. В моменты элонгаций Венера может удалиться от нашей звезды максимум на 47,8°. Как и у Меркурия, у Венеры есть периоды утренней и вечерней видимости: в древности считали, что утренняя и вечерняя Венеры - разные звёзды. Венера - третий по яркости объект на нашем небе. В периоды видимости её блеск в максимуме около?4,4m.

В телескоп, даже небольшой, можно без труда увидеть и пронаблюдать изменение видимой фазы диска планеты. Его впервые наблюдал в 1610 году Галилей.

Прохождение по диску Солнца

Так как Венера расположена ближе к Солнцу, чем Земля, с Земли можно наблюдать прохождение Венеры по диску Солнца. При этом планета предстаёт в виде маленького чёрного диска на фоне огромного светила. Однако это очень редкое явление. В течение примерно двух с половиной столетий случается четыре прохождения - два декабрьских и два июньских. Последнее произошло 6 июня 2012 года. Следующее прохождение будет только 11 декабря 2117 года.

Впервые наблюдал прохождение Венеры по диску Солнца 4 декабря 1639 года английский астроном Иеремия Хоррокс (1619-1641). Он же это явление предвычислил.

Особый интерес для науки представляли наблюдения «явления Венеры на Солнце», которые сделал М.В. Ломоносов 6 июня 1761 года. Это космическое явление было также заранее вычислено и с нетерпением ожидалось астрономами всего мира. Исследование его требовалось для определения параллакса, позволявшего уточнить расстояние от Земли до Солнца (по методу, разработанному английским астрономом Э. Галлеем), что требовало организации наблюдений из разных географических точек на поверхности земного шара - совместных усилий учёных многих стран.

Из рукописи М.В. Ломоносова «Явление Венеры на Солнце…». 1761

Аналогичные визуальные исследования производились в 40 пунктах при участии 112 человек. На территории России организатором их был М.В. Ломоносов, обратившийся 27 марта в Сенат с донесением, обосновывавшим необходимость снаряжения с этой целью астрономических экспедиций в Сибирь, ходатайствовал о выделении денежных средств на это дорогостоящее мероприятие, он составил руководства для наблюдателей и т.д. Результатом его усилий стало направление экспедиции Н.И. Попова в Иркутск и С.Я. Румовского - в Селенгинск. Немалых усилий также стоила ему организация наблюдений в Санкт-Петербурге, в Академической обсерватории, при участии А.Д. Красильникова и Н.Г. Курганова. В их задачу входило наблюдение контактов Венеры и Солнца - зрительного касания краёв их дисков. М.В. Ломоносов, более всего интересовавшийся физической стороной явления, ведя самостоятельные наблюдения в своей домашней обсерватории, обнаружил световой ободок вокруг Венеры.

Это прохождение наблюдалось во всём мире, но только М.В. Ломоносов обратил внимание на то, что при соприкосновении Венеры с диском Солнца вокруг планеты возникло «тонкое, как волос, сияние». Такой же светлый ореол наблюдался и при схождении Венеры с солнечного диска.

М.В. Ломоносов дал правильное научное объяснение этому явлению, считая его результатом рефракции солнечных лучей в атмосфере Венеры. «Планета Венера, - писал он, - окружена знатной воздушной атмосферой, таковой (лишь бы не большею), какова обливается около нашего шара земного». Так впервые в истории астрономии, ещё за сто лет до открытия спектрального анализа, было положено начало физическому изучению планет. В то время о планетах Солнечной системы почти ничего не было известно. Поэтому наличие атмосферы на Венере М.В. Ломоносов рассматривал как неоспоримое доказательство сходства планет и, в частности, сходства между Венерой и Землёй. Эффект увидели многие наблюдатели: Т. Бергман, П. Варгентин, Шапп д"Отерош, С.Я. Румовский, но только М.В. Ломоносов правильно его истолковал. В астрономии этот феномен рассеяния света, отражение световых лучей при скользящем падении (у М.В. Ломоносова - «пупырь»), получил его имя - «явление Ломоносова» .

Интересен второй эффект, наблюдавшийся астрономами с приближением диска Венеры к внешнему краю диска Солнца или при удалении от него. Данное явление, открытое также М.В. Ломоносовым, не было удовлетворительно истолковано, и его, по всей видимости, следует расценивать как зеркальное отражение Солнца атмосферой планеты - особенно велико оно при незначительных углах скольжения, при нахождении Венеры вблизи Солнца. Учёный описывает его следующим образом :

Ожидая вступления Венерина на Солнце около сорока минут после предписанного в эфемеридах времени, увидел наконец, что солнечный край чаемого вступления стал неявственен и несколько будто стушеван, а прежде был весьма чист и везде ровен. Полное выхождение, или последнее прикосновение Венеры заднего края к Солнцу при самом выходе, было также с некоторым отрывом и с неясностью солнечного края.

Приходилось ли вам когда-нибудь видеть частное солнечное затмение? Да - скажет абсолютное большинство любителей астрономии. Приходилось ли вам видеть полное солнечное затмение? Да - скажут некоторые счастливчики. Приходилось ли вам видеть прохождение Венеры по диску Солнца? Нет - ответит вам любой, кого бы вы ни спросили. И в этом нет ничего удивительного. Ведь последнее прохождение Венеры по диску Солнца было в 1882 году, а следующее произойдет... Однако об этом чуть позже. Пока же рассмотрим суть явления.

Внутренние планеты - Меркурий и Венера, проходя в момент нижнего соединения между Землей и Солнцем, могут при определенных условиях проецироваться на солнечный диск. Если бы планеты обращались в плоскости орбиты Земли, то прохождение планеты по диску Солнца происходило бы при каждом нижнем соединении. Но поскольку орбита Меркурия наклонена к плоскости эклиптики на 7°, а орбита Венеры - на 3°, то прохождение планеты будет наблюдаться только в тех редких случаях, когда нижнее соединение совпадает с пересечением планетой эклиптики, т.е. когда планета находится вблизи одного из узлов орбиты.

Земля проходит около этих точек в строго определенное время. Поэтому прохождения Меркурия происходят в начале ноября (вблизи восходящего узла) и в начале мая (вблизи нисходящего узла), а Венеры - в начале декабря (вблизи восходящего узла) и в начале июня (вблизи нисходящего узла). Что же касается периодичности этого явления, то она не одинакова для этих планет. Так, прохождения Меркурия наблюдаются в среднем 14 раз в столетие, в то время как прохождения Венеры - не более двух раз, разделенных восьмилетним промежутком. Они чередуются следующим образом: через 105.5 года, через 8 лет, через 121.5 года, через 8 лет, вновь через 105.5 года и т.д.

Как видим, прохождения Меркурия по диску Солнца происходят сравнительно часто и поэтому не являются чем-то особенно уникальным. Прохождений же Венеры за всю историю астрономии со времен изобретения телескопа было всего лишь шесть. О них и пойдет речь в этой статье.

Впервые явление прохождения Венеры по диску Солнца было предсказано Иоганном Кеплером в 1629 году. Составляя астрономические таблицы по наблюдениям Тихо Браге, которые тот оставил ему в наследство, Кеплер обнаружил, что в 1631 и 1761 г. "Венера видима будет в Солнце".

Прохождение 7 декабря 1631 г. в Европе не наблюдалось (его видимость пришлась на восточные районы). Многие тогда посчитали, что предсказание Кеплера не сбылось. Вполне возможно, что и прохождение 1639 г. также осталось бы незамеченным, если бы не молодой английский астроном-любитель из Ливерпуля Иеремия Хоррокс. Он был выходец из бедной семьи, и его основным занятием была деятельность священника. Пытливый ум и природная склонность к астрономии сделали Хоррокса неутомимым исследователем. Составляя эфемериды по таблицам Ландсберга, он случайно обнаружил, что 14 декабря 1639 года Венера должна пройти по диску Солнца. Однако, посчитав таблицы Ландсберга недостаточно точными, Хоррокс решил получить подтверждение ожидаемого явления по расчетам Кеплера. К его удивлению, таблицы Кеплера тоже предсказывали прохождение Венеры, но десятью днями раньше. Об этом открытии Хоррокс сообщил астроному Крэбтри, с которым состоял в дружеских отношениях.

Не надеясь на точность таблиц, Хоррокс, начиная с 3 декабря, стал непрерывно наблюдать за Солнцем. На следующий день, когда Солнце уже клонилось к закату, Хоррокс наконец-то увидел, что "Венера лишь только начала вступать в Солнце и краем своим касалась уже до краю солнечного". К сожалению, наслаждаться этим явлением ему пришлось недолго. Менее чем через час Солнце с находящимся на нем черным кружком Венеры скрылось за горизонтом. Все, что успел сделать Хоррокс, - это несколько раз измерить угловое расстояние от центра солнечного диска до планеты и ее диаметр.

Крэбтри в тот день тоже наблюдал прохождение Венеры и тоже делал измерения. Это было первое в истории астрономии наблюдение этого редкого явления, а Хоррокс и Крэбтри - первые и до 1761 г. единственные люди на Земле, видевшие собственными глазами "медление Венеры в Солнце".

Шли годы. Астрономия, тесня средневековую инквизицию, быстро набирала силу и вскоре стала официальной наукой. Перед астрономами появлялись все новые задачи, одной из которых стала задача определения расстояния от Земли до Солнца. Эту величину, которую мы теперь называем астрономической единицей, можно рассчитать, зная солнечный параллакс (угол, под которым с Солнца виден экваториальный радиус Земли).

В XVII веке по наблюдениям Венеры и Марса параллакс Солнца был оценен как не превышающий 12" (современное значение 8.79"). Естественно, возникала необходимость определить эту величину более точно, а для этого были нужны более точные методы. И вот, в 1691 г. такой метод был найден. Его предложил знаменитый английский астроном Эдмунд Галлей после того, как в 1677 г. на острове Святой Елены он наблюдал прохождение Меркурия по диску Солнца. Метод заключался в точном определении промежутка времени между вступлением планеты на солнечный диск и схождением с него. При наблюдении из нескольких достаточно удаленных друг от друга мест Земли, зная это время, можно было вычислить параллакс Солнца, а значит и расстояние до него. В применении к Меркурию такой способ давал большую погрешность из-за его большого удаления от Земли, но, "ежели видимая планета в Солнце будет Венера" - утверждал Галлей - "то через наблюдения ее расстояние Земли от Солнца с крайней точностью определено быть может".

Наблюдения Хоррокса и Крэбтри, вследствие своей малой точности, не могли быть использованы для этой цели, поэтому нужно было ждать следующего прохождения Венеры по диску Солнца, которое должно было произойти 6 июня 1761 г. Галлей, зная, что не доживет до этого дня (он умер в 1742 г.), завещал определение солнечного параллакса следующим поколениям астрономов.

Позже, в XVIII веке француз Жозеф Никола Делиль, один из первых членов Петербургской академии наук, предложил еще один способ определения параллакса Солнца из наблюдений прохождений Венеры. Способ Делиля состоял не в определении продолжительности прохождения, а в определении моментов входа или выхода планеты с диска Солнца. Этот способ имел то преимущество, что представлял гораздо больший простор для выбора наблюдательных пунктов, увеличивая тем самым параллактический эффект, но зато требовал точного знания географической долготы места наблюдения и времени. Способ же Галлея мог быть применен только в тех местах, где явление видно все целиком, однако он был удобен тем, что не требовал точного знания ни места, ни времени наблюдения. В скором времени оба эти способа нашли свое применение...

Приближался 1761 год. В Европе вовсю шли приготовления к наблюдениям долгожданного астрономического явления. Более ста астрономов из разных стран были разосланы по всему земному шару в 40 с лишним наблюдательных пунктов по всему миру.

Не осталась в стороне и Российская Империя. Петербургская Академия наук организовала наблюдения в тогдашней столице, а также снарядила две экспедиции в Сибирь: в Иркутск и Якутск. Последней руководил ученик Леонарда Эйлера 27-летний адъюнкт математики Степан Яковлевич Румовский. Отправившись из Петербурга в январе 1761 года, Румовский к концу марта смог добраться только до Иркутска. Здесь он понял, что доехать до Якутска в срок он явно не успеет. Можно было остаться в Иркутске, но это место было предназначено для Н. И. Попова - руководителя первой экспедиции. Тогда Румовский предпринимает попытку добраться хотя бы до Нерчинска. Однако, переехав озеро Байкал, он увидел, что и в Нерчинск попасть тоже невозможно, т.к. по другую сторону Байкала к тому времени зимний путь совсем прекратился. Оставался последний выход - следовать в ближайший город Селенгинск. Рискуя жизнью, Румовский продолжил свой путь по льду реки Селенги, которая вскрылась через два дня после прибытия астронома в Селенгинск.

Наступил день прохождения, но, как это часто бывает, погода оставляла желать лучшего. Небо было затянуто тучами, временами шел дождь, и лишь иногда, когда сильный ветер разрывал облака, Солнце с медленно ползущей по нему Венерой показывалось на несколько минут. Тем не менее, несмотря на такие неблагоприятные условия, Румовскому удалось (правда, сквозь облака) наблюдать выход Венеры из Солнца и засечь моменты третьего и четвертого контактов.

Не повезло и Попову, наблюдавшему явление в Иркутске. Солнце там "беспрерывно облаками похищаемо было".

Зато в Петербурге в тот день погода была хоть куда. И именно в этом городе произошло одно из ярчайших открытий XVIII века. Наблюдениями в Петербурге руководил Михаил Васильевич Ломоносов. Он организовал наблюдательный пункт на университетской обсерватории, где за ходом явления следили адъюнкт астрономии майор А. Д. Красильников, известный своей 13-летней Камчатской экспедицией, и поручик Н. Г. Курганов. Сам Ломоносов наблюдал прохождение у себя дома на Мойке сквозь "весьма не густо копченое стекло" в небольшую трубу, дававшую хорошее изображение только около центра поля зрения. Поручив астрометрическую работу Красильникову и Курганову, Ломоносов "любопытствовал у себя больше для физических примечаний". Он решил "только примечать начало и конец явления и на то употребить всю силу глаза; а в протчее время прохождения дать ему отдохновение".

Прохождение началось в 4 часа 7 минут утра. Ожидая вступления Венеры в течение сорока минут (эфемериды, рассчитанные академиком Эпинусом, оказались неточными), Ломоносов, наконец, увидел, что край солнечного диска слегка прогнулся и стал "неявственен и несколько будто стушеван, а прежде был весьма чист и везде равен". В момент "внутреннего прикосновения" (второго контакта) ему показалось, что сзади Венеры на краю солнца образовался выступ. Еще мгновение - и выступ исчез, а Венера начала свой путь по диску Солнца. Шесть часов понадобилось планете, чтобы пройти от одного края Солнца до другого, так что времени для "отдохновения глаза" было предостаточно.

В четверть одиннадцатого Венера приблизилась к противоположной границе солнечного диска. При выхождении Венеры, когда до края Солнца оставалось "около десятой доли Венерина диаметра, появился на краю Солнца пупырь, который тем явственнее учинялся, чем ближе Венера к выступлению подходила... Вскоре оный пупырь потерялся, и Венера показалась вдруг без края... Полное выхождение, или последнее прикосновение Венеры заднего края к Солнцу при самом выходе, было также с некоторым отрывом и с неясностью солнечного края".

Появление светового ободка вокруг диска Венеры Ломоносов объяснил преломлением солнечных лучей в верхних слоях атмосферы Венеры. В своем отчете он заключил: "По сим примечаниям господин советник Ломоносов рассуждает, что планета Венера окружена знатной воздушной атмосферой, таковой (лишь бы не большею), какова обливается вокруг нашего шара земного".

Само по себе явление световой каймы вокруг Венеры получило (правда, уже в XX веке) название "явление Ломоносова". Разумеется, это явление видели и другие наблюдатели. (Так, например, Румовский писал, что при выходе "край Венерин светлым кольцом окружен казался".) Однако только Ломоносов смог правильно истолковать увиденное, впервые открыв, таким образом, атмосферу у другой планеты.

Но, как известно, ничто в науке не проходит гладко, и наряду с великими открытиями случаются и неудачи. Не являются исключением и прохождения Венеры по диску Солнца. Подтверждением этому служит следующая грустная история.

В 1760 году Парижская Академия наук для наблюдения прохождения командировала в Индию своего члена Гийома Лежантиля. Однако вспыхнувшая между Англией и Францией война помешала ему достигнуть места назначения вовремя. Явление застало его в море, и все что ему удалось сделать, - это лишь несколько грубых зарисовок с качающейся палубы фрегата. О точных измерениях не могло быть и речи.

Следующее прохождение должно было произойти 3 июня 1769 г. Чтобы не опоздать снова, Лежантиль решил не уезжать и остался в городе Пондишери, куда он не успел попасть в 1761 году. Восемь лет длилось томительное ожидание. Астроклимат в этой точке Земли был отменным - пасмурные дни в году насчитывались единицами.

Так было и 2 июня 1769 г. Весь день погода стояла ясная, и Лежантиль уже не сомневался в успехе завтрашнего мероприятия. Но, увы, на следующий день небо оказалось затянуто облаками. Теперь ближайшего прохождения нужно было ждать 105.5 лет.

На обратном пути Лежантиль терпел кораблекрушения, попадал к пиратам и, в конце концов, в 1771 году, испытывая всяческие лишения, чудом вернулся домой. Но оказалось, что за 11 лет его отсутствия ученого сочли погибшим, его место в академии было занято, а наследники поделили имущество...

Рассуждая о превратностях судьбы французского астронома, мы незаметно перешли к прохождению Венеры по диску Солнца 1769 года. Приготовления к его наблюдениям, по сравнению с 1761 г., были поис-тине крупномасштабными. Царствовавшая в то время императрица Екатерина II понимала значимость предстоящего явления для науки, и поэтому подготовка к наблюдениям в России началась еще в 1767 году.

Для наблюдения вхождения Венеры Академия определила северные города Колу, Кемь и Кандалакшу, а также Соловецкий монастырь. Летом в этих местах Солнце не заходит, и все явление можно наблюдать от начала до конца. Окончание прохождения должно было быть видно практически по всей России, но наилучшие условия приходились на юг страны. Исходя из этого, Академия остановила свой выбор на городах Гурьев, Оренбург и Орск.

Еще одну экспедицию было решено послать на восток, где явление было видно полностью. Для этой экспедиции, исходя из удобства сообщения, погодных и прочих условий, лучше всех подходил город Якутск.

Однако, если выбор южных и восточного пунктов наблюдения не вызывал трудностей, то северные точки пришлось пересмотреть, учитывая их труднодоступность, малонаселенность и низкое положение Солнца над горизонтом. В частности, одним из необходимых условий было отсутствие гор с северо-восточной и северо-западной стороны. Губернатор Архангельска Е. А. Головцын по повелению Екатерины II приказал осмотреть назначенные Академией места и дал свой ответ, что Кандалакша, Кемь и Соловецкий монастырь для наблюдений не годятся, а также, что нигде, кроме Колы, Поноя, Умбы и острова Кильдюйна, да и то с большим трудом, обсерватории построить невозможно. Эти места Академия и утвердила как окончательные.

Теперь дело оставалось за инструментами, которыми в нужном количестве Академия не располагала. На закупку инструментов и снаряжения из государственной казны было отпущено шесть тысяч рублей. Инструменты были заказаны в Англии и Франции.

Многие европейские ученые, видя столь серьезные приготовления к наблюдениям прохождения в России, предложили Академии свои услуги. Знаменитый математик Леонард Эйлер направил для наблюдений своего сына Христофора Эйлера, а Даниил Бернулли - своего ученика Андрея Малле. Для проведения наблюдений Академия уже вовсю обучала штурманов, присланных из Адмиралтейства, но не была уверена, что их можно назначить начальниками экспедиций. Поэтому Академия с радостью приняла этих и других молодых ученых из Европы.

Тем временем было уже пора посылать астронома в Якутск. Инструменты из-за границы еще не пришли, но у Академии нашлось нужное количество инструментов, чтобы снабдить хотя бы одну экспедицию. Пожелавший поехать в Якутск европейский астроном Лопиц не успел приехать в Россию, и чтобы не терять времени. Академия назначила начальником экспедиции капитана Ивана Исленьева, который обучался при Академии прикладной астрономии. В феврале 1768 г. Исленьев отправляется в путь.

К концу лета инструменты из Англии и Франции наконец-то прибыли в Санкт-Петербург, а в начале 1769 г. астрономы разъехались по назначенным для них пунктам.

С. Румовский (теперь уже академик) был направлен в Колу, А. Малле - в Поной, Л. Пикте - в Умбу, Г. Ловиц - в Гурьев, X. Эйлер - в Орск и Л. Крафт - в Оренбург. Всем участникам на время экспедиции было положено двойное жалование, а губернаторам, через чьи губернии пролегал путь экспедиций, было приказано выделить солдат для охраны ученых и имущества, а также "чинить им всякое потребное вспоможение". Перед отъездом в дальний путь Екатерина II удостоила астрономов личным приемом и прощанием.

Все экспедиции благополучно достигли своих мест, за исключением острова Кильдюйна, сообщение с которым открылось всего за неделю до прохождения, и посылать туда наблюдателей уже не было смысла.

В Петербурге была специально отремонтирована и подготовлена к наблюдению прохождения академическая обсерватория. Проведение наблюдений было поручено знаменитому впоследствии астроному из Мангейма Христиану Мейеру со своим помощником Шталем. Вместе с ними наблюдали русский астроном С. К. Котельников и академики Л. Эйлер и А. И. Лексель.

Екатерина II пожелала быть не только покровительницей всех приготовлений, но и собственными глазами видеть редкое явление. Чтобы не мешать наблюдениям на обсерватории, императрица выехала в Ораниенбаум и разместилась на возвышении в семи верстах от летнего ораниенбаумского дворца в деревне Верхняя Бронная, где специально для нее была сооружена наблюдательная площадка. В Петербурге и других северных пунктах Европы явление можно было наблюдать 3 июня при заходе Солнца (вступление Венеры) и на следующее утро при восходе (окончание явления). Вечером западный горизонт покрылся легкими облаками, что помешало Екатерине видеть вступление планеты на солнечный диск. Но к утру облака рассеялись, и императрица смогла насладиться зрелищем. Уже до восхода Солнца она находилась на месте и наблюдала не только прохождение, но и частное солнечное затмение, бывшее через несколько часов после него.

Астрономы на академической обсерватории тоже не спали, но только для них, в отличие от Екатерины II, наблюдение прохождения являлось работой, а не зрелищем. Солнце взошло, когда Венера уже приближалась к выходу, поэтому прохождение длилось в Петербурге не более 50 минут. Тем не менее, несмотря на небольшую высоту Солнца, 3-й и 4-й контакты Мейер и остальные видели отчетливо.

Повезло с погодой и на юге России. Во всех трех южных пунктах наблюдения схождения Венеры с диска Солнца прошли успешно. В Якутске и на севере страны погодные условия были не столь идеальными, но все же благоприятными, и лишь в Умбе было пасмурно, и шел дождь.

После окончания наблюдений астрономы из северных городов вернулись в Петербург, а остальные должны были продолжить свои экспедиции для определения географических координат населенных пунктов на юге России. К сожалению, за эти данные для российской науки некоторым участникам пришлось заплатить слишком дорогую цену. Так, адъюнкт астрономии Вольфганг Людвиг Крафт, руководивший Оренбургской экспедицией, получил предложение ехать в Молдавию. Проехав для этого через Киев и Каменец, он был остановлен свирепствовавшей здесь эпидемией холеры, которая оставила его без помощников, умерших от этой болезни. Крафт попросил Академию освободить его от продолжения работ. Академия удовлетворила его просьбу, и в 1771 г. Крафт вернулся в Москву.

Еще более трагически закончилась экспедиция для профессора Георга Морица Ловица. После наблюдения прохождения в г. Гурьеве Астраханской губернии Ловиц и его помощник адъюнкт (впоследствии академик) Петр Борисович Иноходцев должны были отправиться в Астрахань, а потом по Волге - в Царицын, Дмитриевск и Саратов для определения широты и долготы этих городов. Затем возле Тулы они должны были встретиться с Орской экспедицией Христофора Эйлера, занимавшейся тем же самым в других городах. Но этой встрече не суждено было случиться. Производя свои измерения в 1774 г. в районах, охваченных восстанием Пугачева, Ловиц был убит повстанцами недалеко от Саратова. Ездивший с ним его 12-летний сын Товий Ловиц и Иноходцев случайно избежали этой участи, и им удалось спасти некоторые инструменты и все записи сделанных экспедицией наблюдений.

Как видно, наблюдения прохождения Венеры по диску Солнца 4 июня 1769 г. прошли в нашей стране, что называется, с "российским размахом". Однако не стоит забывать, что и другие страны тоже принимали участие в этом мероприятии. Так, например, английское адмиралтейство вменило в обязанность наблюдение прохождения Венеры молодому путешественнику капитану Джеймсу Куку. Ему был выделен фрегат "Усердие", переделанный из судна для перевозки угля в превосходный военный корабль. В августе 1768 г. Кук отправился в свое первое кругосветное плавание.

Наблюдение прохождения осуществлялось английскими учеными с астрономической площадки, оборудованной Куком на острове Таити. Кругосветное путешествие Джеймса Кука заняло три года, и в 1771 г. корабль "Усердие" вернулся в родной порт...

Пришла пора подвести итоги прохождений Венеры по диску Солнца 1761 и 1769 гг. Стоит сразу сказать, что метод уточнения величины астрономической единицы по наблюдениям прохождений не оправдал возлагавшихся на него надежд. Поскольку у астрономов не было опыта проведения подобных наблюдений прохождение 1761 г. не дало желаемого результата и, главным образом, послужило для них хорошей школой.

Наблюдения прохождения 1769 г. хотя и были более удачными, но все же оставляли желать лучшего. Ошибка регистрации моментов контактов вместо ожидавшейся секунды доходила до минуты, что было отчасти обусловлено оптическими явлениями, связанными с наличием у Венеры атмосферы.

Кроме уже упоминавшегося "явления Ломоносова", точной регистрации мешали появления затенений и так называемой "черной капли" (небольшой темной перемычки между планетой и краем солнечного диска, сохраняющейся в течение нескольких десятков секунд после 2-го контакта). Наконец, определение географических координат наблюдательных станций по затмению Солнца, бывшему в тот же день, и затмениям спутников Юпитера оказались недостаточно точными для получения хороших результатов.

Тем не менее, расчет солнечного параллакса по наблюдениям 1761 и 1769 гг., произведенный Леонардом Эйлером, дал результат в 8.62", что соответствовало расстоянию от Земли до Солнца 152.6 млн. км. Позже, уже в XIX веке, наблюдательный материал был вторично обработан Повалки, который вывел новое значение солнечного параллакса в 8.83" (149.99 млн. км). Естественно, это значение было несравненно ближе к истинному (149.6 млн. км), чем все предыдущие, но все же требовало дальнейшего уточнения.

Прошло 100 лет. Осенью 1869 года Академией наук была учреждена ученая комиссия для подготовки к наблюдению прохождения Венеры по диску Солнца 9 декабря 1874 г. Инициатором ее создания был директор Пулковской обсерватории Отто Васильевич Струве (сын основателя обсерватории В. Я. Струве). На заседании Физико-математического отделения Академии наук О. В. Струве заявил, что задачу наблюдения явления в русских владениях он считает "ученым наследием России после вечнопамятного участия ее в наблюдениях подобного явления во время царствования Екатерины II".

Полоса видимости прохождения 1874 г. простиралась дугообразно по всей территории России от Владивостока до Тифлиса, захватывая южную часть Сибири, Туркестанскую и Астраханскую губернии. Полностью явление было видно в Забайкалье и на Дальнем Востоке. Наблюдения в крайних пунктах могли быть использованы для определения параллакса Солнца, и упустить такой шанс российские астрономы не могли.

Общее руководство по осуществлению всей программы экспедиционных наблюдений было возложено на Пулковскую обсерваторию. На этот раз не пришлось прибегать к помощи иностранных ученых, т.к. нашлось необходимое количество отечественных наблюдателей. Все они должны были пройти стажировку в Пулкове для освоения методики наблюдений на специальном устройстве, имитирующем прохождение, созданном специально для этой цели старшим астрономом обсерватории А. Ф. Вагнером.

Устройство представляло собой большое двояковыпуклое стекло, освещенное сзади лампой. Перед ним со скоростью, соответствующей угловой скорости движения Венеры, перемещался черный жестяной кружок нужного размера. Прибор был соединен с гальванической батареей, и в момент, когда происходило действительное прикосновение между краями "солнечного диска" и "Венеры", замыкалась электрическая цепь, отклоняющая магнитную стрелку. Сравнивая истинный момент прикосновения с моментом, записанным наблюдателем, можно было выявить величину личной ошибки наблюдателя и погрешность применяемого инструмента.

Кроме того, комиссия произвела учет средств наблюдений, имеющихся на обсерваториях страны, и приняла меры к заказу новых специализированных инструментов, т.к. старые методы наблюдений были дополнены фотографическими и прямыми микрометрическими измерениями положений Венеры относительно края Солнца.

Поздний осенний сезон не предвещал благоприятной погоды. Поэтому наблюдения было целесообразно организовать по всей полосе видимости явления, включая пункты, расположенные в других странах, где вероятность ясной погоды была намного выше. Для этого Общество любителей естествознания Московского университета направило экспедицию под руководством В. К. Деллена в Египет, а полковник И. И. Стребницкий был послан в Тегеран. Всего же, с учетом стационарных обсерваторий, комиссия Академии наук организовала 32 наблюдательных пункта.

Основная часть экспедиций была сосредоточена на восточном и западном концах зоны наблюдаемости для обеспечения максимальной удаленности между пунктами. Остальные экспедиции были разбросаны по всей полосе, что называется, "для подстраховки". Однако для того чтобы рассчитать по результатам наблюдений солнечный параллакс, необходимо было знать точные взаимные расстояния между пунктами или их географические координаты. Последняя задача легла на геодезистов и военных связистов. В короткие сроки они навели телеграфную связь и определили долготы основных пунктов на всем протяжении Сибири и Дальнего Востока.

Летом 1874 г. все было готово к наблюдениям, и экспедиции разъехались по назначенным точкам. За остававшиеся до прохождения несколько месяцев нужно было не только добраться до места назначения, но и соорудить временные обсерватории и, разумеется, как следует подготовиться к явлению, которое астрономическая общественность всего мира ждала столько лет.

Наступило 9 декабря. Но, как и ожидалось, небо в большинстве пунктов было покрыто плотной пеленой облаков. "Из 32 русских станций лишь на двух, и именно на расположенных вне пределов России, погода позволила пронаблюдать весь ход явления, на 9-ти других удалось наблюдать отдельные фазы прохождения, а на всех остальных пасмурность, дождь и снег были причиной полной неудачи", - писал О. В. Струве после того, как получил рапорты со всех наблюдательных пунктов. Наиболее удачными оказались наблюдения в Фивах (в Египте). Дел-лен видел все прохождение при совершенно ясном небе. Во время входа и выхода Венеры он отчетливо наблюдал "явление Ломоносова" и другие оптические явления, вызванные атмосферой планеты. Причем Деллен тщательно изучал их влияние на регистрацию моментов контактов. Хорошая погода была также в Тегеране. В России более-менее удовлетворительные результаты были получены лишь в нескольких пунктах на востоке страны.

К сожалению, наблюдения прохождения Венеры 1874 г. принесли большое разочарование. Снова появилась неоднозначность в определении контактов, а фотографический метод ввиду несовершенства фотографии того времени оказался недостаточно точным. Пожалуй, главным итогом всего предприятия стало установление телеграфной связи между станциями наблюдений. Дело, сделанное геодезистами на пользу астрономии, обратилось еще более полезным для самой геодезии.

Следующее прохождение Венеры 6 декабря 1882 г. на российской территории нигде видно не было, поэтому в его наблюдении Россия прямого участия не принимала. Область видимости этого прохождения попала на западное полушарие Земли с его огромными океанскими просторами. Естественно, западным морским державам было проще доставить своих наблюдателей с инструментами на избранные для них станции. В связи с этим Пулковская обсерватория предоставила два гелиометра, оставшихся от наблюдений 1874 г., Французской Академии наук и шестидюймовый рефрактор - Копенгагенской экспедиции.

Результаты наблюдений прохождения 1882 г. были более удовлетворительными, чем прохождения 1874 г., но обработка полученных данных растянулась на многие годы. В результате в 1896 г. на международной конференции в Париже, которая ввела во всеобщее употребление единую систему астрономических постоянных, для параллакса Солнца было принято значение 8.80".

В настоящее время астрономическая единица определена с достаточной точностью современными радиолокационными методами, и наблюдение прохождений с целью уточнения солнечного параллакса утратило свое значение. Но как уникальное астрономическое явление, увидеть которое человек может в лучшем случае дважды в своей жизни, прохождение Венеры по диску Солнца не потеряет своей актуальности никогда.

Нетрудно посчитать, прибавив к дате последнего прохождения 121.5 года, что ближайшее прохождение Венеры произойдет в июне 2004 года, а парное ему - всего через 8 лет, т.е. в июне 2012 года. Таким образом, нашему поколению астрономов природа предоставляет шанс два раза полюбоваться этим феноменом. Стоит отметить, что парное прохождение с восьмилетним промежутком в каждом узле имеет место только в настоящую эпоху, т.к. Венера в момент прохождения оказывается на достаточном удалении от узла. Если же прохождение происходит вблизи узла, то видимый путь планеты пролегает через центр солнечного диска. При этом длительность прохождения максимальна и может достигать 8.6 часа. Однако через 8 лет, во время следующего нижнего соединения вблизи узла, Венера пройдет уже выше или ниже Солнца, и прохождения будут чередоваться с периодом в 243 года для каждого узла. Именно такая ситуация сложится в конце четвертого тысячелетия, когда в обоих узлах будет только по одному прохождению. Так что у жителей Земли далекого будущего не будет возможности дважды в жизни увидеть столь редкое явление (разве что только продолжительность человеческой жизни к тому времени значительно увеличится).

Но не будем забегать так далеко вперед, а остановимся в начале XXI века. Прохождение Венеры 8 июня 2004 г. будет видно от начала и до конца почти на всей территории России. Лишь на Дальнем Востоке и Камчатке Солнце зайдет немного раньше, чем Венера "покинет" его. На европейской территории России явление начнется около 9 утра по московскому летнему времени и будет продолжаться 6 часов.

Прохождение 5-6 июня 2012 г. "компенсирует" жителям востока нашей страны неполноту предыдущего явления, но зато "обделенной" окажется европейская часть России. Здесь Солнце взойдет, когда Венера уже пройдет почти половину своего пути по солнечному диску. Исключение составят только Кольский полуостров и Архангельская область, где, благодаря полярному дню, все явление можно будет наблюдать целиком.

Но до этого прохождения еще сравнительно далеко, а вот 8 июня 2004 г. уже не за горами. В этот день, где бы вы ни находились, не забудьте обратить свой взор на наше дневное светило. Комфортные летние условия и высокая вероятность ясной погоды в начале июня сделают ваши наблюдения незабываемыми. А вид венерианской атмосферы при вступлении планеты на диск Солнца заставит вас вспомнить о "пупыре" и даст возможность почувствовать некую причастность к великому открытию. Осталось ждать не так уж долго. И кто знает, может быть именно вы окажетесь тем первым человеком из всех ныне живущих на Земле людей, кто наконец-то увидит это одно из редчайших астрономических явлений!

Рис. 1: Земля (синяя), Венера (серая) и Солнце (оранженвое), не в масштабе.

По поводу прохождения Венеры по диску Солнца 2012 года написано уже . О том, как редко случается это событие, и почему именно: по идее, Венера, движущаяся вокруг Солнца чаще, чем Земля, должна проходить между Землёй и Солнцем во время каждого своего оборота (рис. 1), но из-за того, что орбиты двух планет не выровнены (не находятся в одной плоскости, см. рис. 2), Венера часто проходит выше или ниже Солнца с точки зрения Земли.

Но вместо того, чтобы повторять слова других, я хочу добавить несколько деталей, которые не так легко найти в интернете.

Вы, возможно, читали, что при помощи техники, основанной на рассуждениях астронома Эдмунда Галлея (известного кометой Галлея), сделанных им с 1678 по 1716 года, а также Джеймса Грегори до него, прохождение Венеры 1716 года был использован для определения расстояния от Земли до Солнца (и до Венеры, и всех остальных планет) с погрешностью в 2% - высочайшая из достигнутых на то время. Надеялись, что точность будет в 10 раз выше, но в процесс вмешался неожиданный оптический эффект под названием “ ” - по поводу точных причин его возникновения до сих пор идут споры. Но вы могли не прочесть, что это измерение - и множество других измерений расстояний в астрономии, вплоть до достаточно близко расположенных звёзд - основано на принципе , на том же геометрическом факте, который используется нашими глазами и мозгом для восприятия глубины, или нашей способности чувствовать, насколько далеко от нас находятся объекты, просто взглянув на них.



Рис. 2: Земля (синяя), Венера (серая) и Солнце (оранжевое), не в масштабе. Орбита Венеры (чёрный круг в сером прямоугольнике) наклонена относительно орбиты Земли (синий круг в голубом прямоугольнике). Градус наклона сильно преувеличен. Поскольку Земля и Венера вращаются вокруг Солнца с разными скоростями, они могут проходить мимо друг друга в любых точках орбит.
Верх: большую часть при таком проходе Венера находится выше или ниже (зелёная линия) линии, соединяющей Землю и Солнце (красная линия), поэтому прохождения Венеры по диску Солнца не происходит.
Внизу: В редких случаях линия, соединяющая Землю и Солнце, совпадает с линией пересечения плоскостей орбит, и Венера находится вблизи этой же линии, что и ведёт к прохождению.

Без параллакса тоже несложно определить относительное расстояние от Венеры до Солнца - то есть, отношение радиуса орбиты Венеры L V к радиусу орбиты Земли L E . Поэтому в астрономии эпохи Возрождения довольно рано были высчитаны относительные расстояния от планет до Земли и Солнца. Но чтобы определить L V и L E отдельно, необходимо измерить параллакс, и прохождение Венеры может его обеспечить. Прохождение Венеры в 1760-х дало довольно точное измерение величины L E - L V , «абсолютного» расстояния от Земли до Венеры; это позволило узнать L E , L V , и расстояния до всех остальных планет с погрешностью в пару процентов. До этого, в конце XVII в, было сделано измерение расстояния от Земли до Марса, имевшее погрешность около 10%; оно тоже было основано на параллаксе, но это совсем другая история.

Предварительное замечание: Земля и Венера, и даже Солнце очень малы по сравнению с расстояниями между ними, поэтому нарисовать точные изображения практически невозможно. На иллюстрациях всё время приходится рисовать планеты большими, чем они есть на самом деле, по отношению к расстояниям между ними, просто чтобы вы смогли понять концепцию. Имейте это в виду! Все мои иллюстрации сделаны не в масштабе.

Относительные размеры орбит Венеры и Земли


Рис. 3

Чтобы понять основную причину простоты определения L V /L E , предположим, что орбиты Земли и Венеры круговые и выровненные - они лежат в одной плоскости (как показано на рис. 1, изометрически, и на рис. 3 - вид «сверху»). На самом деле, орбиты Земли и Венеры немного вытянутые и не выровнены (рис. 2). Но эллиптичность и несовпадение плоскостей не сильно важны для наших рассуждений, поэтому сперва мы сможем их проигнорировать, а потом вновь вспомнить, чтобы получить более точные ответы.

Здесь мы применим классическую для физики технологию: сделаем приближение, достаточное для текущей задачи, и не будем углубляться больше, чем нужно. Это очень мощный способ размышления о науке и о знании вообще - на любой вопрос достаточно ответить с определённым уровнем точности, поэтому можно использовать простейшую технику из тех, что дадут вам нужный уровень точности. Этот метод прекрасно используется столетиями и применим не только к физике.

Поэтому мы примем приближение, по которому орбиты круговые и выровнены, и получим примерно правильные ответы, с погрешностью в несколько процентов. Этого будет достаточно для того, чтобы продемонстрировать основные концепции, чего я и добиваюсь. Поверьте мне, что можно сделать гораздо более точные вычисления - или же можете самостоятельно стать экспертом в этом вопросе. Но наше приближение не только даст очень неплохой ответ, но и сможет показать, почему так легко вычислить отношение L V к L E , но не сами значения L V и L E .

В течение года, когда Земля и Венера вращаются вокруг Солнца с разными скоростями, относительное положение Земли и Венеры по отношению к Солнцу меняется. Если в определённый день (день, месяц, год) я решу нарисовать картинку с Солнцем в центре и с Землёй слева, как на рис. 2, тогда Венера может оказаться в любом месте своей орбиты. Это значит, что с точки зрения Земли, угол между Венерой и Солнцем в небе будет меняться в зависимости от даты. Это показано на рис. 3, где угол назван γ. Угол легко измерить; найдите Венеру в небе после заката или перед восходом и измерьте угол между Венерой и Солнцем; см. рис. 4.


Рис. 4

Из рис. 3 видно, что у γ есть максимальный размер - угол между оранжевой и фиолетовой линиями. Перемещаясь по орбите, Венера с каждым закатом будет появляться в другом месте; некоторое время она будет несколько ночей подряд подниматься всё выше над горизонтом, а затем постепенно начнёт появляться ниже. Наблюдая за Венерой несколько ночей подряд и измеряя γ, мы можем определить максимальное значение γ, которое я назову γ max .

Из рис. 3 очевидно, что (как показано на рис. 4) γ max меньше 90°, поскольку фиолетовая линия должна лежать между оранжевой и красной, перпендикуляром. Геометрически это следствие того, что Венера всегда находится ближе к Солнцу, чем Земля. Эти углы объясняют, почему Венера всегда видна либо сразу после захода или перед рассветом (за исключением тех дней, когда она расположена за Солнцем). Венера не может быть в зените после наступления темноты, поскольку для этого ей надо было бы находиться слева от красной линии.


Рис. 5

Теперь мы можем определить отношение радиусов двух орбит - L V к L E - используя γ max . Это простейшая геометрия, см. рис. 5. Суть в том, что когда Венера находится на максимальном угле от Солнца, линия между Солнцем и Венерой перпендикулярна линии между Землёй и Венерой, поэтому линии, соединяющие эти три объекта, образуют прямоугольный треугольник. Отсюда получаем при помощи стандартной тригонометрии:

И отсюда же, при помощи других простейших геометрических формул, мы получаем отношения между расстояниями до других планет.

Это не совсем точно, по причинам, указанным в начале; орбиты планет - эллипсы, и не лежат водной плоскости. Иначе говоря, L V и L E не сохраняются в течение года, а γ max применяется немного сложнее, в трёх измерениях, как на рис. 2, а не в двух, как на рис. 1, 3 и 5. Но при помощи точных измерений положения Венеры и Солнца в небе возможно определить точные орбиты Венеры и Земли вокруг Солнца и улучшить расчёты. Смысл тот же; все измерения положения Венеры и Солнца в небе позволяют лишь измерить относительные размеры орбит Венеры и Земли. Но точные величины L V и L E так определить нельзя. Тут нужен другой подход.

Прохождение Венеры, параллакс и расстояние до Солнца

Причина, по которой прохождение Венеры позволяет измерить абсолютные величины орбит Земли и Венеры - этот процесс можно наблюдать с высокой точностью с разных мест земного шара, в результате чего у вас будут две перспективы видимого местонахождения Венеры по отношению к Солнцу, измеренные из разных мест с известным расстоянием между ними. Измерение параллакса позволяет определить абсолютную величину расстояние от Земли до Венеры из угла параллакса и расстояния между двумя точками измерения на Земле - точно так же, как разный вид объекта для левого и правого глаза позволяет нашему мозгу выдавать для нас ощущение глубины - чувство расстояния до объектов.


Рис. 6

Для демонстрации позвольте мне нарисовать то, как это будет выглядеть с крупной планеты. На рис. 6 показана планета, с которой мы будем наблюдать прохождение (это будет Земля) и проходящая перед звездой планета (это будет Венера). Я представлю упрощённую ситуацию (просто чтобы геометрия стала более простой и основную концепцию было проще увидеть), в которой планеты и звезда выровнены, поэтому с точки зрения наблюдателя на экваторе проходящая планета будет проходить по экватору звезды. Сверху на рис. 6 показан вид «сбоку»; обратите внимание на красную линию, идущую от экватора наблюдающей планеты к звезде через экватор планеты, проходящей по диску звезды.

В случае идеального выравнивания, наблюдатель на экваторе внешней планеты увидит, как внутренняя планета проходит по экватору звезды. Это показано в виде красной линии внизу рис. 6. Но наблюдатель с южного полюса внешней планеты увидит, как внутренняя планета проходит звезду по пути (фиолетовая линия) к северу от экватора звезды (в случае северного полюса всё будет наоборот). Если измерить угол α в небе между путями, по которым двигается проходящая планета, и знать радиус R наблюдающей планеты, мы сможем нарисовать прямоугольный треугольник, соединяющий проходящую планету, центр наблюдающей планеты и полюс наблюдающей планеты, с малым углом &alpha. Простая тригонометрия даст нам расстояние D между планетами во время прохождения, где


Рис. 7

То же верно для Земли, Венеры и Солнца, кроме того, что Земля и Венера так малы по сравнению с расстоянием между ними и Солнцем, что угол α окажется равным порядка 1/20°! (Это довольно малая величина, но вполне измеримая, хотя для точного измерения расстояния до Солнца, которое хотели получить астрономы XVIII века, потребовалось бы довольно сложное технически точное измерение величины небольшого угла). Такой маленький угол я не нарисую, поэтому придётся вам поверить мне на слово, что происходящее является доведённой до предела версией того, что я изобразил на рис. 6, с планетами и звездой (Солнцем) гораздо меньшими, чем нарисованы там, по отношению к расстояниям. Даже изображение на рис. 7 делает планеты гораздо больше, чем они есть. Но идея остаётся неизменной: расстояние D EV между Землёй и Венерой во время прохождения можно определить, измерив угол параллакса α (внизу рис. 7; отметьте, что угловой диаметр Солнца равен порядка 1/2°).

Однако осталось ещё много вопросов:

  • Я рассказал, как измерить D EV , расстояние от Земли до Венеры во время прохождения. Но разве нашей целью было не измерить L E и L V , расстояние от Земли до Солнца и от Венеры до Солнца?
  • Никто не отправлялся на южный полюс Земли, чтобы наблюдать прохождение Венеры в 1761 или 1769 году.
  • Я предположил идеально выровненные орбиты Земли, Венеры и положение Солнца, такие, что из точки на экваторе Земли можно было бы видеть Венеру, двигающуюся по экватору Солнца. Но это на самом деле не так, и даже близко не похоже на типичное прохождение (и в 2012-м такого тоже не было).
  • Угол α достаточно мал, чтобы его можно было точно измерить - особенно во времена до фотографии и мгновенных сообщений, в отсутствие чётких указаний на местоположение северного полюса Солнца, из-за чего сложно точно сравнить измерения пути Венеры, сделанные с двух разных точек Земли. Однако первичной целью было измерить угол не хуже, чем 1 часть из 500 (0,2%) (хотя из-за эффекта чёрной капли результат получился ближе к 1 части из 50 (2%)).

Как же справиться с этими проблемами?

Первое, как пройти от измерения D EV до измерения нужных величин, L E и L V ? Это просто - все взаимоотношения нам уже известны, в частности, мы уже знаем L E /L V (примерно, из рис. 4, или, если подойти к вопросу более тщательно, можно подсчитать и точнее) из максимального угла γ max между Венерой и Солнцем с точки зрения Земли. Нам также известно D EV = L E - L V = L E (1 - L V /L E) из рис. 7. Поэтому мы можем получить приближённое значение L E при помощи:

где α - угол параллакса, измеренный во время транзита, а γ max - максимальный угол между Венерой и Солнцем (рис. 5). Более точные измерения требуют более сложной геометрии, однако с той же основной идеей.

Второе, даже если бы орбиты планет были идеально выровнены, два измерения пути Венеры не нужно измерять с экватора и полюса Земли. Их можно измерить с двух любых широт. Геометрия становится немного сложнее, но не сильно, а принцип остаётся (см. рис. 8).


Рис. 8

Третье, даже без идеального выравнивания появится небольшой угол параллакса при измерении величин с двух разных точек Земли, и если хорошо измерить этот угол, это измерение можно превратить (через чуть более сложные уравнения) в измерение D. Это показано на рис. 8, внизу.

Четвёртый вопрос - исторически сложная проблема измерения углового сдвига пути Венеры во время прохождения на угол α ведёт нас к альтернативной попытке измерения времени - либо времени прохождения, либо просто начала и конца прохождения, а не углов. Первый вариант был предложен Галлеем на основе идей Грегори, а второй, в качестве дальнейшего улучшения, предложил Жозеф Никола Делиль. Метод Галлея не требовал синхронизации часов в разных местах Земли; метод Делиля требовал, поэтому основывался на более передовой часовой технологии.

Даже в XVII или XVIII веке гораздо проще выполнить точное измерение интервала, или моментов начала и завершения затмения, чем точно измерить местоположение Венеры относительно диска Солнца, особенно при отсутствии фотографии. На рис. 9 можно видеть, что фиолетовый и красный пути Венеры, пересекающей Солнце, имеют немного отличные длины из-за того, что они не пересекают его в одном месте, а это значит, что длительность прохождения будет отличаться на время, связанное с углом параллакса. К сожалению, всё оказывается сложнее, чем выглядит на первый взгляд - Земля вертится и движется вокруг Солнца, поэтому наблюдатель проходит довольно значительное расстояние во время прохождения Венеры по диску Солнца. Поэтому требуется много усилий (вычисления довольно сложны, хотя с современными компьютерами они гораздо проще) для определения разницы временных интервалов начала и конца прохождения, наблюдаемого двумя разными наблюдателями на Земле, в зависимости от расстояния до Солнца. Галлей в начале XVIII века понимал все необходимые геометрические принципы (если вычесть устаревшую английскую фразеологию и стиль из его текстов, вы будете удивлены, как современно звучат его сложные утверждения, и вы увидите, что учёные ещё триста лет назад были очень похожи на сегодняшних учёных, обладали таким же интеллектом и им не хватало только научной технологии сегодняшнего дня).


Рис. 9

Всё это говорит о том, что параллакс - различие в видимом положении, приписываемом Венере по отношению к Солнцу с точки зрения наблюдателей, измеряющих его в одно и то же время но с разных мест на Земле - исторически был очень важным методом, с помощью которого был определён размер Солнечной системы. Сегодня нам доступны и более мощные методы, но вам может быть интересным тот факт, что то, что вы видите сегодня в небе, имеет величайшую историческую важность, или же вы просто можете наслаждаться видом Венеры, величаво движущейся вокруг нашей звезды.