Технология глобальной спутниковой навигации: какие бывают системы, параметры и функции. Системы навигации

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Курсовая работа


«Спутниковые системы навигации»


Трёхгорный 2009

Введение


Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские учёные во главе с Ричардом Кершнером, наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если Вы точно знаете свои координаты на Земле, то становится возможным измерить положение спутника, и наоборот, точно зная положение спутника, можно определить собственные координаты.

Реализована эта идея была через 20 лет. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом Глобальная система позиционирования или сокращённо GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле. Также с помощью системы вмонтированной в спутники стало реально определять мощные ядерные заряды, находящиеся на поверхности планеты.

Первоначально GPS – глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 г. был сбит вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту, президент США Рональд Рейган разрешил частичное использование системы навигации для гражданских целей. Но точность была уменьшена специальным алгоритмом.

Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности и с успехом компенсируют эту составляющую ошибки, и в 2000 г. это загрубление точности было отменено указом президента США.

1. Спутниковая система навигации


Спутниковая система навигации – комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты), а также параметров движения (скороти и направлення движения и т.д.) для наземных, водных и воздушных объектов.


1.1 Что такое GPS?


Спутниковая навигационная система GPS была изначально разработана США для использования в военных целях. Другое известное название системы – «NAVSTAR». Ставшее уже нарицательным название «GPS» является сокращением от Global Positioning System, которое переводится, как Глобальная Навигационная Система. Это название полностью характеризуется предназначение системы – обеспечение навигации на всей территории Земного шара. Не только на суше, но и на море и в воздухе. Используя навигационные сигналы системы GPS, любой пользователь может определить свое текущее местоположение с высокой точностью.

Такая точность, во многом, стала возможной благодаря шагам Американского правительства, которое в 2000 году сделало систему GPS доступной и открытой для гражданских пользователей. Напомним, что ранее с помощью специального режима избирательного доступа (SA – Selective Availability) в передаваемый сигнал вносились искажения, снижающие точность позиционирования до 70–100 метров. С 1 мая 2000 года, этот режим был отключен и точность повысилась до 3–10 метров.

Фактически, это событие дало мощный импульс для развития бытовой навигационной GPS аппаратуры, снижению ее стоимости, и активной ее популяризации среди обычных пользователей. На текущий момент, GPS приемники разных типов активно применяются во всех областях человеческой деятельности, начиная от обычной навигации, заканчивая персональным контролем и увлекательными играми, типа «Geocaching». По результатам многих исследований, использование навигационных GPS систем дает большой экономический эффект для мировой экономики и экологии – повышается безопасность движения, улучшается дорожная ситуация, уменьшается расход топлива, снижается количество вредных выбросов в атмосферу.

Растущая зависимость европейской экономики от системы GPS, и, как следствие, от администрации США, вынудила Европу начать разработку собственной навигационной системы – Galilleo. Новая система во многом похожа на систему GPS.


2. Состав системы GPS


2.1 Космический сегмент


Космический сегмент системы GPS состоит из орбитальной группировки спутников, излучающих навигационные сигналы. Спутники расположены на 6-и орбитах на высоте около 20000 км. Период обращения спутников составляет 12 часов и скорость около 3 км/c. Таким образом, за сутки, каждый спутник совершает два полных оборота вокруг Земли.

Первый спутник был запущен в феврале 1978 года. Его размер с раскрытыми солнечными батареями равнялся 5 метрам, а вес – более 900 кг. Это был спутник первой модификации GPS-I. За последние 30 лет, на орбите сменилось несколько модификаций GPS спутников: GPS II-A, GPS II-R, GPS IIR-M. В процессе модернизации снижался вес спутников, улучшалось стабильность бортовых часов, повышалась надежность.

GPS спутники передают три навигационных сигнала на двух частотах L1 и L2. «Гражданский» сигнал C/A, передаваемый на частоте L1 (1575.42 МГц), доступен всем пользователям, и обеспечивает точность позиционирования 3–10 метров. Высокоточный «военный» P-код, передается на частотах L1 и L2 (1227.60 МГц) и его точность на порядок выше «гражданского» сигнала. Использование сигнала, передаваемого на двух разных частотах, позволяет также частично компенсировать ионосферные задержки.

В последней модификации спутников «GPS IIR-М» реализован новый «гражданский» сигнал L2C, призванный повысить точность GPS измерений.

Идентификация навигационных сигналов осуществляется по номеру, соответствующему «псевдошумовому коду», уникального для каждого спутника. В технической спецификации GPS системы изначально было заложено 32 кода. На этапе разработки системы и начальном периоде ее эксплуатации, планировалось, что количество рабочих спутников не будет превышать 24-х. Свободные коды выделялись для новых GPS спутников, находящихся на этапе ввода в эксплуатацию. И этого количества было достаточно для нормального функционирования системы. Но в настоящее время, на орбите находится уже 32 спутника, из которых 31 функционирует в рабочем режиме, передавая навигационный сигнал на Землю.

«Избыточность» спутников позволяет обеспечить пользователю вычисление позиции в условиях, где «видимость» неба ограничена высотными зданиями, деревьями или горами.


2.2 Наземный сегмент


Наземный сегмент системы GPS состоит из 5-и контрольных станций и главной станции управления, расположенных на военных базах США – на островах Кваджалейн и Гавайях в Тихом океане, на острове Вознесенья, на острове Диего-Гарсия в Индийском океане и в Колорадо-Спрингс, они преведены на рисунке 1. В задачи станций мониторинга входит прием и измерение навигационных сигналов поступающих с GPS спутников, вычисление различного рода ошибок и передача этих данных на станцию управления. Совместная обработка полученных данных позволяет вычислить отклонение траекторий спутников от заданных орбит, временные сдвиги бортовых часов и ошибки в навигационных сообщениях. Мониторинг состояния GPS спутников происходит практически непрерывно. «Загрузка» навигационных данных, состоящих из прогнозируемых орбит и поправок часов для каждого из спутников, осуществляется каждые 24 часа, в момент, когда он находится в зоне доступа станции управления.

В дополнение к наземным GPS станциям существует несколько частных и государственных сетей слежения, которые выполняют измерения навигационных GPS сигналов для уточнения параметров атмосферы и траекторий движения спутников.

Рисунок 1


2.3 Аппаратура пользователей


Под аппаратурой пользователя подразумевают навигационные приемники, которые используют сигнал со спутников GPS для вычисления текущей позиции, скорости и времени. Пользовательскую аппаратуру можно разделить на «бытовую» и «профессиональную». Во многом этом разделение условное, так как иногда достаточно трудно определить, к какой категории следует отнести GPS приемник и какие критерии при этом использовать. Есть целых класс GPS навигаторов, использующихся в пеших походах, автомобильных путешествиях, на рыбалке и т.п. Есть авиационные и морские навигационные системы, которые зачастую входят в состав сложных навигационных комплексов. В последнее время широкое распространение получили GPS чипы, которые интегрируются в КПК, телефоны и другие мобильные устройства.

Поэтому в навигации бо льшее распространение получило деление GPS приемников на «кодовые» и «фазовые». В первом случае, для вычисления позиции используется информация, передаваемая в навигационных сообщениях. К этой категории относится большинство недорогих GPS навигаторов, стоимостью 100–2000 долларов.

Вторая категория навигационных GPS приемников использует не только данные, содержащиеся в навигационных сообщениях, но и фазу несущего сигнала. В большинстве случаев это дорогостоящие одно- и двухчастотные (L1 и L2) геодезические приемники, способные вычислять позицию с относительной точностью в несколько сантиметров и даже миллиметров. Такая точность достигается в RTK режиме, при совместной обработке измерений GPS приемника и данных базовой станции. Стоимость таких устройств может составлять десятки тысяч долларов.


3. Работа GPS-навигатор а


Основной принцип, лежащий в основе всей системы GPS, прост и давно используется для навигации и ориентирования: если вы точно знаете местоположение какого-либо реперного ориентира и расстояние до него, то можно начертить окружность (в 3-х мерном случае – сферу), на которой должна быть расположена точка вашего положения. На практике, если вышеуказанное расстояние, т.е. радиус, достаточно велик, то можно заменить дугу окружности отрезком прямой линии. Если провести несколько таких линий, соответствующих разным реперным ориентирам, то точка их пересечения укажет ваше местоположение. В GPS роль таких реперов играют две дюжины спутников, движущихся каждый по своей орбите на высоте ~ 17 000 км над поверхностью Земли. Скорость их движения весьма велика, однако параметры орбиты и их текущее местонахождение с высокой точностью известны бортовым компьютерам. Важной частью любого GPS-навигатора является обычный приемник, работающий на фиксированной частоте и постоянно «прослушивающий» сигналы, передаваемые этими спутниками. Каждый из спутников постоянно излучает радиосигнал, в котором содержатся данные о параметрах его орбиты, состоянии бортового оборудования и о точном времени. Изо всей этой информации данные о точном бортовом времени являются наиболее важными: GPS-приемник с помощью встроенного процессора вычисляет промежуток времени между посылкой и получением сигнала, затем умножает его на скорость распространения радиоволн и т.о. узнает расстояние между спутником и приемником.


3.1 Нестабильность часов приемника


Из описанного выше принципа видно, что для определения местоположения достаточно поймать сигналы от двух спутников и построить две пересекающиеся прямые. Однако на практике точность такого метода была бы недостаточной из-за наличия ошибки часов приемника. Дело в том, что спутники, находящиеся на орбите, имеют на борту очень точные и, естественно, дорогостоящие атомные часы. Что же касается GPS-приемников, особенно бытовых, то использование таких часов было бы неоправдано в смысле габаритов и стоимости. Это было одной из серьезных проблем, с которыми столкнулись разработчики – ведь неточность хода часов всего в одну тысячную секунды приводила бы к ошибке более 250 км! Для решения этой проблемы и для возможности использования в GPS-приемниках обычных кварцевых часов (аналогичных тем, которые используются в быту) было предложено использовать не два, а три реперных ориентира, т.е. три пересекающиеся прямые. Как же это работает?

Предположим, что часы GPS-радиоприемника немного спешат, т.е. измеренное время прохождения радиоволн будет больше реального. Это означает, что обе расчитанные линии, и, следовательно, точка их пересечения будут находиться на большем расстоянии от ориентиров (спутников), чем на самом деле. Если же часы отстают, то точка пересечения переместится ближе к спутникам. Возмем теперь третий ориентир (спутник). Легко видеть, что пересечение трех линий даст нам треугольник, размеры и положение которого могут меняться в зависимости от хода часов. Более того, учитывая, что неточность часов для всех трех сигналов будет практически одинаковой, можно автоматически подобрать такую величину коррекции, которая обеспечит пересечение всех трех линий в одной искомой точке.


3.2 Принцип действия GPS


Принцип действия спутниковой GPS навигации основан на определении расстояния от текущего положения до группы спутников. Точное местоположение GPS спутников известно из данных эфемерид и альманаха, передаваемых в навигационных сообщениях. Зная расстояние до трех спутников, можно определить текущее местоположение, как точку пересечение трёх окружностей (рисунок 2). Расстояние до спутников определяется простым уравнением



где t– время распространения радиосигнала от спутника до наблюдателя, а с – постоянная величина, равная скорости света. Соответственно, зная время, за которое сигнал дошел от спутника до GPS приемника и, умножив ее на скорость света, можно определить расстояние.



Рисунок 2


Чтобы определить момент, в который сигнал был «отправлен» со спутника, навигационное сообщение модулируется «псевдошумовым» PRN-кодом, соответствующим номеру спутника. Аналогичная последовательность генерируется в GPS приемнике в строгой временной синхронизации с кодом спутника. Принятый со спутника код сравнивается с кодом приемника, и определяется «как давно» в приемнике была сгенерирована схожая последовательность. Выявленный таким образом сдвиг одного кода по отношению к другому будет соответствовать времени прохождения сигналом расстояния от спутника до приемника. Преимуществом кодовых посылок является то, что измерения временного сдвига могут быть проведены в любой момент времени.

Стоит отметить, что для точного вычисления расстояния часы GPS приемника и GPS спутника должны быть синхронизированы с высокой точностью. Потому что отличие даже в несколько микросекунд приводят к ошибке в несколько десятков километров, а это в свою очередь вносит погрешность в вычисление позиции.

Но если на GPS спутниках установлены атомные часы, имеющие очень высокую точность и стоимость которых составляет несколько сотен тысяч долларов, то в обычных GPS навигаторах использование таких дорогих источников частоты просто невозможно. В GPS навигаторах используются недорогие кварцевые генераторы, которые имеют существенно меньшую точность. Поэтому для вычисления «уходов» кварца при решении навигационной задачи используются измерения 4-го спутника. Фактически, получается задача с 4-мя неизвестными – координатами X, Y, Z и временем T. Именно по этой причине измеренное расстояние до спутников называют «псевдодальностью», подразумевая, что оно содержит ошибку связанную с неточностью часов. В настоящее время, многоканальные GPS навигаторы одновременно отслеживают до 8–10 спутников, что позволяет быстро решить большинство неоднозначностей.

Информацию о местоположении спутников GPS приемники получают из передаваемых в навигационных сообщений данных альманаха и эфемерид. Альманах содержит информацию о расположение спутников «на небе», что позволяет при очередном включении GPS прибора значительно сузить секторы поиска навигационного сигнала и уменьшить время его «захвата». Точные координаты спутников вычисляются на основании данных эфемерид. В отличие от альманаха, спутник передает только данные «своих» эфемерид, поэтому для его использования в подсчете позиции, GPS приемник должен получить полное навигационное сообщение. Ошибки передачи, связанные с «плохими» окружающими условиями, могут существенно увеличить время фиксации позиции. Наличие в памяти данных альманаха и эфемерид позволяет GPS приемнику определять позицию за 1–2 секунды. Этот режим называется «горячим» стартом.

Геометрический фактор определяет относительное расположение GPS приемника и спутников, используемых в подсчете позиции. Его величина влияет на точность определения позиции. Если все спутники расположены в одном направлении от GPS приемника, то площадь пересечения всех окружностей будет достаточно большой. Эта площадь характеризует величину неопределенности измерений, влияющих на точность подсчёта и позиции (рисунок 3).


Рисунок 3


В случае, когда спутники расположены «вокруг» GPS приемника, область пересечений окружностей и соответственно величина неопределённостей умньшаются (рисунок 4).


Рисунок 4

3.3 Точность системы


Учитывая вышесказанное, мы видим, что для устранения нестабильности хода часов приемника и определения точного местоположения в двумерном пространстве (т.е. по широте и долготе) нам необходимо получить сигналы мимнимум от 3-х спутников. К счастью, сегодня количество GPS-спутников достаточно велико даже для того, чтобы в любой точке земного шара определить не только двумерные, но и трехмерные координаты – широту, долготу и высоту над уровнем моря. Для этого нужно получать сигналы минимум от 4-х спутников. При этом, чем больше спутников «видит» Ваш GPS – приемник, тем точнее он может определить координаты местоположения – вплоть до максимального предела, определяемого точностью системы. Из этого, в частности, следует, что точность работы GPS-навигатора снижается, если сигналы от некоторых спутников экранируются местными предметами (рельефом местности, деревьями с плотной кроной, высокими зданиями и т.п.).

Как известно, спутниковая GPS-система оплачивается и находится под контролем Департамента обороны США, который зарезервировал предельную точность исключительно для своих военных целей. Для этого передаваемый спутниками сигнал кодируется с помощью специального Р-кода, который может быть декодирован только военными GPS-приемниками. В дополнение к этому, в сигналы времени от спутниковых атомных часов добавляется случайная ошибка, которая искажает полученные значения координат. В результате точность гражданских GPS-премников ухудшается более чем в 10 раз по сравнению с военными и составляет около 50–150 м.

В действительности, на практике все выглядит несколько сложнее, чем в теории. Это объясняется влиянием на GPS измерения различного рода ошибок. Можно выделить три категории ошибок (рисунок 5):

Ошибки системы.

Ошибки связанны с распространением навигационного сигнала.

Ошибки приемной аппаратуры.



Рисунок 5


Ошибки системы связаны точностью атомных часов спутников и соответствием реальной траектории спутников заданной орбите. Несмотря на то, что в каждом GPS спутнике используются высокоточные атомные часы, они тоже могут содержать ошибки и отклоняться от истинного значения системного эталона времени. Отклонение в 30 нс ведет к ошибке определения расстояния в 10 метров. Поэтому, все отклонения бортовых часов отслеживаются и их значения передаются в составе навигационных сообщений и учитываются GPS приемником в вычислениях позиции.

Второй тип системных ошибок связан с неточностью передаваемых эфемерид. В математической модели учитываются множество факторов, влияющих на изменение траектории орбит GPS спутников, но небольшие ошибки все равно присутствуют.

Наиболее существенный вклад в навигационные измерения вносят ошибки, связанные с распространением сигнала атмосфере Земли, а именно в ионосферных и тропосферных ее слоях. Ионосфера Земли представляет собой слой заряженных частиц на высоте от 120 до 200 км. Эти частицы снижают скорость распространения сигнала, и, следовательно, увеличивают его время. Соответственно вносится ошибка в оценку расстояния от GPS приемника до спутника. Эти задержки могут быть смоделированы для разного времени суток, усреднены и внесены в измерения, но, к сожалению, эти модели не могут точно отобразить реальную ситуацию. После прохождения ионосферного слоя, навигационный сигнал попадает в тропосферный слой, в котором происходят все погодные явления и присутствуют водяные пары, также влияющее на скорость распространения сигнала. Для борьбы с ионосферными задержками используют дифференциальные метод определения позиции. Корректирующие поправки передаются с помощью геостационарных спутников WAAS/EGNOS и позволяют повысить точность позиционирования до 1 метра.

Ошибки многолучевости можно одновременно отнести и к категории ошибок, связанных с распространением навигационного GPS сигнала, и к ошибкам GPS приемника. Ошибка многолучевости связана с переотражением навигационного сигнала от близкорасположенных объектов – зданий, металлических конструкций, деревьев и т.п. (рисунок 6). В результате этого эффекта время распространения отраженного сигнала превышает время «прямого» сигнала. Если уровень переотраженного сигнала выше уровня «прямого» сигнала, то происходит ошибочный «захват», и в результате, вносится ошибка в вычисления расстояния до спутника.


Рисунок 6


3.4 Дифференциальная GPS


Для того, чтобы в ряде случаем можно было «обойти» ограничения, наложенные Департаментом обороны США, некоторые специальные службы (например, береговая охрана США) установили сеть фиксированных т.н. «дифференциальных» радио-буев. Каждый из них постоянно регистрирует сигналы GPS-спутников и сравнивает расчитанные координаты со своим известным постоянным местоположением. Вычисленная таким образом ошибка передается радио-буем на фиксированной частоте (обычно в 2-х метровом диапазоне) в виде специального сигнала. Если этот сигнал поймать с помощью дополнительного т.н. «дифференциального» приемника, подключенного к GPS-навигатору, то последний может внести соответствующую поправку и определить координаты с точностью около 1 метра. В последнее время такие службы получают все большее распространение в западных странах, однако их услуги часто бывают платными.


4. Современное состояние


В настоящее время работают или готовятся к развёртыванию следующие системы спутниковой навигации:

Принадлежит министерству обороны США, что считается другими государствами её главным недостатком. Более известна под названием GPS . Единственная полностью работающая спутниковая навигационная система.

Глобальная навигационная спутниковая система (ГЛОНАСС) – советская и российская спутниковая система навигации, разработанная по заказу Министерства обороны СССР.

Принадлежит министерству обороны России. Является попыткой восстановить функционировавшую с 1982 года советскую систему. Находится на этапе повторного развёртывания спутниковой группировки (оптимальное состояние орбитальной группировки спутников, запущенных в СССР, было в 1993–1995 гг.). Современная система, по заявлениям разработчиков наземного оборудования, будет обладать некоторыми техническими преимуществами по сравнению с NAVSTAR. Однако в настоящее время эти утверждения проверить невозможно ввиду недостаточности спутниковой группировки и отсутствия доступного клиентского оборудования.

Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклонением 64,8° и высотой 19100 км. Принцип измерения аналогичен американской системе навигации NAVSTAR.

Развёртываемая в настоящее время Китаем подсистема GNSS, предназначенная для использования только в этой стране. Особенность – небольшое количество спутников, находящихся на геостационарной орбите.

Европейская система, находящаяся на этапе создания спутниковой группировки.

Индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в этой стране. Запуск первого спутника ожидается в 2009 году.


4.1 Создание карт для навигационных систем


Компания Navteq Corporation была образована в 1985 году и уже через девять лет начала поставлять свой софт для «заводских» навигационных систем – первым потребителем стала компания BMW. Сейчас продукцию Navteq покупают, например, для «конвейерной» установки на автомобили Chrysler и Mercedes, ею пользуются интернет-ресурсы (в частности, Google Maps), а самым известным производителем переносных PND-устройств (Personal Navigation Device) с картами Navteq является американская фирма Garmin. Сейчас карты Navteq покрывают 74 страны мира, а с февраля 2006 года в этот список входит и Россия: российское представительство компании сотрудничает с семнадцатью автопроизводителями, среди которых Peugeot, Opel и Mitsubishi, и в 2009 году к ним должен добавиться еще десяток фирм.

Процесс создания электронной карты для навигационного устройства включает в себя несколько этапов. Сначала у геодезистов покупают картоснову – подробную карту местности с обозначением населенных пунктов и отображением автомобильных дорог. Затем начинается процесс ее адаптации к автомобильным нуждам: специально экипированная бригада отправляется на визуальное изучение местности. В автомобиле находятся водитель и геоаналитик с арсеналом высокоточного «оружия». Главную роль играет GPS-приемник, осуществляющий привязку к местности. С ним синхронизируется камера-регистратор, которая раз в секунду отправляет в память ноутбука привязанное к абсолютным координатам изображение. Причем для более точного описания маршрута оператор с помощью игрового джойстика «вешает» на «картинку» стандартные значки-атрибуты, обозначающие класс дороги, тип покрытия, разрешенную скорость, номера домов, пешеходные переходы и т.д. Помимо этого, оператор оставляет звуковые комментарии и делает рукописные пометки с помощью графического планшета и «карандаша». Программу для создания навигационной карты можно увидеть на рисунке 7.

За один рабочий день экипажу удается «прорисовать» от 70 до 100 км городских дорог или около 300 км пригородных трасс, причем фактический пробег получается куда большим: геоаналитику надо зафиксировать все проезжие участки, а широкие проспекты и бульвары приходится проезжать в обоих направлениях. В итоге накапливается огромный массив данных, которые потом обрабатываются в аналитическом центре. Повторное «сканирование» местности проводится по мере появления новых дорог, а старые объезжаются приблизительно раз в год, но заказчики получают обновленные версии карт ежеквартально: исправление ошибок производится главным образом по сигналам пользователей. Но до них обновленные релизы доходят как минимум через два-три месяца после анонса.

Почему? Во-первых, нужно адаптировать карту под «железо» и фирменные стандарты подачи информации: цветовую схему, звуковое сопровождение и т.д. Во-вторых, между самим продуктом и его потребителем есть немало посредников, претендующих на свой кусок пирога. Иной раз диски с «фирменной» картографией для штатных навигационных систем появляются с задержкой до восьми месяцев! Неудивительно, что на фоне такой нерасторопности процветает пиратство – ворованные копии карт зачастую появляются в продаже раньше лицензионных продуктов. По состоянию на декабрь 2008 года «российские» карты Navteq покрывают дорожную сеть пятнадцати городов-миллионеров и шести областей. Всего – 281 тыс. км дорог. В начале года должна быть готова детальная карта Москвы, в которой будут прописаны не только подъездные дороги ко всем домам и корпусам, но и подробные схемы проезда «хитрых» развязок – например, повороты налево через правый «карман». Выход аналогичной карты Санкт-Петербурга планируется в первом квартале. Но в России компания Navteq сейчас в роли догоняющего – у основных конкурентов зона покрытия куда больше. Например, карты компании Навиком покрывают 412 городов с возможностью адресного поиска и 2,8 млн км дорог включая грунтовки. Аналогичные показатели у компании Навител – 231 город и 598 тыс. км, а у компании Tele Atlas – 50 городов и 875 тыс. км. Еще одна характеристика – количество объектов инфраструктуры, к которым относятся рестораны, автозаправки, гостиницы и т.д. На российской карте Navteq их отмечено 47 тысяч, в то время как карта одного Нью-Йорка содержит 60 тысяч «интересных точек». Словом, поле для деятельности – широчайшее.



Рисунок 7

5. Системы спутниковой навигации ГЛОНАСС и GPS


Система Глонасс предназначена для глобальной оперативной навигации приземных подвижных объектов. СРНСС разработана по заказу Министерства Обороны. По своей структуре Глонасс так же, как и GPS, считается системой двойного действия, то есть может использоваться как в военных, так и в гражданских целях.

Система в целом включает в себя три функциональные части (в профессиональной литературе эти части называются сегментами).



Рисунок 8


космический сегмент, в который входит орбитальная группировка искусственных спутников Земли (иными словами, навигационных космических аппаратов);

сегмент управления, наземный комплекс управления (НКУ) орбитальной группировкой космических аппаратов;

аппаратура пользователей системы.

Из этих трёх частей последняя, аппаратура пользователей, самая многочисленная. Система Глонасс является беззапросной, поэтому количество потребителей системы не имеет значения. Помимо основной функции – навигационных определений, – система позволяет производить высокоточную взаимную синхронизацию стандартов частоты и времени на удалённых наземных объектах и взаимную геодезическую привязку. Кроме того, с её помощью можно производить определение ориентации объекта на основе измерений, производимых от четырёх приёмников сигналов навигационных спутников.

В системе Глонасс в качестве радионавигационной опорной станции используются навигационные космические аппараты (НКА), вращающиеся по круговой геостационарной орбите на высоте ~ 19100 км. Период обращения спутника вокруг Земли равен, в среднем, 11 часов 45 минут. Время эксплуатации спутника – 5 лет, за это время параметры его орбиты не должны отличаться от номинальных значений больше чем на 5%. Сам спутник представляет собой герметический контейнер диаметром 1,35 м и длиной 7,84 м, внутри которого размещается различного рода аппаратура. Питание всех систем производится от солнечных батарей. Общая масса спутника – 1415 кг. В состав бортовой аппаратуры входят: бортовой навигационный передатчик, хронизатор (часы), бортовой управляющий комплекс, система ориентации и стабилизации и так далее.



Рисунок 9



Рисунок 10а



Рисунок 10Б


Сегмент наземного комплекса управления системы ГЛОНАСС выполняет следующие функции:

эфемеридное и частотно-временное обеспечение;

мониторинг радионавигационного поля;

радиотелеметрический мониторинг НКА;

командное и программное радиоуправление НКА.

Для синхронизации шкал времени различных спутников с необходимой точностью на борту НКА используются цезиевые стандарты частоты с относительной нестабильностью порядка 10–13. На наземном комплексе управления используется водородный стандарт с относительной нестабильностью 10–14. Кроме того, в состав НКУ входят средства коррекции шкал времени спутников относительно эталонной шкалы с погрешность 3–5 нс.

Наземный сегмент обеспечивает эфемеридное обеспечение спутников. Это означает, что на земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определённый промежуток времени. Параметры и их прогноз закладываются в навигационное сообщение, передаваемое спутником наряду с передачей навигационного сигнала. Сюда же входят частотно-временные поправки бортовой шкалы времени спутника относительно системного времени. Измерение и прогноз параметров движения НКА производятся в Баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости.

Американская система GPS по своим функциональным возможностям аналогична отечественной системе Глонасс. Её основное назначение – высокоточное определение координат потребителя, составляющих вектора скорости, и привязка к системной шкале времени. Аналогично отечественной, система GPS разработана для Министерства Обороны США и находится под его управлением. Согласно интерфейсному контрольному документу, основными разработчиками системы являются:

по космическому сегменту – Rockwell International Space Division, Martin Marietta Astro Space Division;

по сегменту управления – IBM, Federal System Company;

по сегменту потребителей – Rockwell International, Collins Avio-nics & Communication Division.

Как и система Глонасс, GPS состоит из космического сегмента, наземного командно-измерительного комплекса и сегмента потребителей.

Навигация это определение координатно-временных параметров объектов.

Первым эффективным средством навигации было определение местоположения по видимым небесным телам (солнце, звезды, луна). Другой простейший метод навигации это привязка к местности, т.е. определение местоположения относительно известных ориентиров (водонапорные башни, линии электропередач, шоссейные и железные дороги и др.).

Системы навигации и позиционирования предназначены для постоянного контроля за местонахождением (состоянием) объектов. В настоящее время существует два класса средств навигации и позиционирования: наземные и космические.

К наземным относят стационарные, возимые и переносные системы, комплексы, станции наземной разведки, иные средства навигации и позиционирования. Принцип их действия заключается в контроле радиоэфира посредством специальных антенн, подключаемых к сканирующим радиостанциям, и выделении радиосигналов, излучаемых радиопередатчиками объектов слежения или излучаемых самим комплексом (станцией) и отраженных от объекта слежения либо от специальной метки или кодового бортового датчика (КБД), размещенных на объекте. При использовании такого рода технических средств имеется возможность получить информацию о координатах местонахождения, направлении и скорости перемещения контролируемого объекта. При наличии на объектах слежения специальной метки или КБД устройства идентификации, подключаемые к системам, позволяют не только отмечать местоположение контролируемых объектов на электронной карте, но и соответствующим образом различать их.

Космические системы навигации и позиционирования разделяются на два типа.

Первый тип космических систем навигации и позиционирования отличает применение на мобильных объектах слежения специальных датчиков – приемников спутниковой навигационной системы типа ГЛОНАСС (Россия) или GPS (США). Навигационные приемники подвижных объектов слежения принимают от навигационной системы радиосигнал, который содержит координаты (эфемериды) спутников на орбите и отсчет времени. Процессор навигационного приемника, по данным от спутников (как минимум, от трех) рассчитывает географические широту и долготу его местонахождения (приемника). Эта информация (географические координаты) может быть визуализирована как на самом навигационном приемнике, при наличии устройства вывода информации (дисплея, монитора), так и в пункте слежения, при ее передаче от навигационного приемника подвижного объекта посредством радиосвязи (радиальной, конвенциональной, транкинговой, сотовой, спутниковой).

Второй тип космических систем навигации и позиционирования отличает сканирующий прием (пеленг) на орбите сигналов, поступающих от радиомаяков, установленных на объекте слежения. Спутник, принимающий сигналы от радиомаяков, как правило, сначала накапливает, а затем в определенной точке орбиты передает информацию об объектах слежения в наземный центр обработки данных. Время доставки информации при этом несколько увеличивается.


Спутниковые навигационные системы позволяют:

осуществлять непрерывный контроль и слежение за любыми подвижными объектами;

отображать на электронной карте диспетчера координаты, маршрут и скорость движения объектов контроля и слежения (с точностью определения координат и высоты над уровнем моря до 100 м, а в дифференциальном режиме – до 2…5 м);

оперативно реагировать на внештатные ситуации (изменение ожидаемых параметров на объекте контроля и слежения либо в его маршруте и графике движения, сигнал SOS и т. д.);

оптимизировать маршруты и графики движения объектов контроля и слежения.

В настоящее время функции специализированных систем навигации и позиционирования (автоматическое отслеживание текущего месторасположения абонентских аппаратов, терминалов связи с целью обеспечения роуминга и предоставления услуг связи) с относительной точностью могут выполнять спутниковые и сотовые (при наличии на базовых станциях аппаратуры определения местонахождения) системы радиосвязи.

Широкое внедрение систем навигации и позиционирования, повсеместная установка соответствующей аппаратуры в сетях сотовой связи России с целью определения и постоянного контроля местонахождения работающих передатчиков, патрулей, транспорта, иных объектов, представляющих интерес для органов внутренних дел, могло бы значительно расширить возможности правоохранительной деятельности.

Основной принцип определения местоположения с помощью спутниковых навигационных систем – использование спутников в качестве точек отсчета.

Для того, чтобы определить широту и долготу наземного приемника, приемник должен получать сигналы не менее чем от трех спутников и знать их координаты и расстояние от спутников до приемника (рис. 6.8). Координаты измеряются относительно цента земли, который имеет координату (0, 0, 0).

Расстояние от спутника до приемника вычисляется по измеренному времени распространения сигнала. Эти вычисления выполнить несложно, так как известно, что электромагнитные волны распространяются со скоростью света. Если известны координаты трех спутников и расстояния от них до приемника, то приемник может вычислить одно из двух возможных мест в пространстве (точки 1 и 2 рис. 6.8). Обычно приемник может определить, какая из этих двух точек действительная, так как одно значение местоположения имеет бессмысленное значение.

Рис. 6.8. Определение местоположения по сигналам от трех спутников

На практике, для исключения ошибки часов генератора, которое влияет на точность измерений разницы во времени, необходимо знать местоположение и расстояние до четвертого спутника (рис. 6.9).


Рис. 6.9. Определение местоположения по сигналам от четырех спутников

В настоящее время существуют и активно используются две спутниковые навигационные системы – ГЛОНАСС и GPS.

Спутниковые навигационные системы включают в себя три составные части (рис. 6.10):

космический сегмент, в который входит орбитальная группировка искусственных спутников Земли (иными словами, навигационных космических аппаратов);

сегмент управления, наземный комплекс управления (НКУ) орбитальной группировкой космических аппаратов;

аппаратура пользователей системы.


Рис. 6.10. Состав спутниковых навигационных систем

Космический сегмент системы ГЛОНАСС состоит из 24 навигационных космических аппаратов (НКА), находящихся на круговых орбитах высотой 19100 км, наклонением 64,5° и периодом обращения 11 ч 15 мин в трех орбитальных плоскостях (рис. 6.11). В каждой орбитальной плоскости размещаются по 8 спутников с равномерным сдвигом по широте 45°.

Космический сегмент навигационной системы GPS состоит из 24 основных НКА и 3 резервных. НКА находятся на шести круговых орбитах высотой около 20000 км, наклонением 55°, равномерно разнесенных по долготе через 60°.


Рис. 6.11. Орбиты спутников ГЛОНАСС и GPS

Сегмент наземного комплекса управления системы ГЛОНАСС выполняет следующие функции:

эфемеридное и частотно-временное обеспечение;

мониторинг радионавигационного поля;

радиотелеметрический мониторинг НКА;

командное и программное радиоуправление НКА.

Для синхронизации шкал времени различных спутников с необходимой точностью на борту НКА используются цезиевые стандарты частоты с относительной нестабильностью порядка 10 -13 с. На наземном комплексе управления используется водородный стандарт с относительной нестабильностью 10 -14 с. Кроме того, в состав НКУ входят средства коррекции шкал времени спутников относительно эталонной шкалы с погрешность 3–5 нс.

Наземный сегмент обеспечивает эфемеридное обеспечение спутников. Это означает, что на земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определённый промежуток времени. Параметры и их прогноз закладываются в навигационное сообщение, передаваемое спутником наряду с передачей навигационного сигнала. Сюда же входят частотно-временные поправки бортовой шкалы времени спутника относительно системного времени. Измерение и прогноз параметров движения НКА производятся в Баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости.

Аппаратура пользователей системы это радиотехнические устройства, предназначенные для приема и обработки радионавигационных сигналов навигационных космических аппаратов для определения пространственных координат, составляющих вектора скорости движения и поправки шкал времени потребителя глобальной навигационной спутниковой системы.

Приемник определяет местоположение потребителя, который отбирает из всех наблюдаемых спутников наиболее благоприятные в части обеспечения точности навигации. По дальностям до выбранных спутников он определяет долготу, широту и высоту потребителя, а также параметры его движения: направление и скорость. Полученные данные отображаются на дисплее в виде цифровых координат, либо отображаться на карте, предварительно скопированной в приемник.

Приемники спутниковых навигационных систем являются пассивными, т.е. они не излучают сигналы и не имеют обратного канала связи. Это позволяет иметь неограниченного количество потребителей навигационных систем связи.

Большое распространение в настоящее время получили системы мониторинга движения объектов на основе спутниковых навигационных систем. Структура такой системы показана на рис. 6.12.


Рис. 6.12. Структура системы мониторинга

Навигационные приемника, установленные на объектах слежения, принимают сигналы от спутников и вычисляют свои координаты. Но, так как навигационные приемники это пассивные устройства, то в системе необходимо предусмотреть систему передачи вычисленных координат в центр мониторинга. В качестве средств передачи данных о координатах объекта наблюдения могут служить УКВ-радиомодемы, GSM/GPRS/EDGE-модемы (сети 2G), сети третьего поколения, работающие по протоколам UMTS/HSDPA, CDMA-модемы, системы спутниковых систем связи и др.

Центр мониторинга спутниковой навигационно-мониторинговой системы предназначен для наблюдения за объектами, на которых установлено (содержится) навигационно-связное оборудование с целью контроля отдельных его параметров (местоположения, скорости, направления движения) и принятия решения на те или иные действия.

В центре мониторинга содержатся программно-технические средства обработки информации, обеспечивающие:

прием, обработку и хранение информации, поступающей от объектов наблюдения;

отображение на электронной карте местности информации о местоположении объектов наблюдения.

навигационно-мониторинговой системой органов внутренних дел решаются следующие задачи:

обеспечение автоматизированного контроля персоналом дежурной части за расстановкой экипажей транспортных средств;

обеспечение персонала дежурной части информацией о местонахождении транспортных средств для принятия управленческих решений при организации оперативного реагирования на происшествия в зоне ответственности;

отображение в графическом формате информации о позиционировании транспортных средств и иной служебной информации на автоматизированное рабочее место оператор;

формирование и хранение архива о маршрутах движения экипажей транспортных средств в период несения ими службы;

выдача статистической отчетности о выполнении норм обязательного выставления сил и средств в течение дежурной смены, сводных параметрах эффективности использования сил и средств, показателях контроля зон ответственности.

Для обеспечения высокой надежности и достоверности передачи мониторинговой информации от бортового оборудования автотранспорта подразделений МВД России в дежурные чисти в составе системы необходимо использовать резервный канал передачи данных, в качестве которого можно использовать УКВ-радиосвязь.

Б.А. Дворкин

Активное внедрение информационных спутниковых технологий как составной части бурно развивающейся информатизации общества кардинально меняет условия жизни и деятельности людей, их культуру, стереотип поведения, образ мыслей. Еще несколько лет тому назад на бытовые или автомобильные навигаторы смотрели как на чудо. Космические снимки высокого разрешения на Интернет-сервисах, таких, например, как Google Earth, люди разглядывали и не преставали восхищаться. Сейчас же ни один автомобилист (если в автомобиле пока нет навигатора) не выйдет из дома, предварительно не выбрав в навигационном портале оптимальный маршрут с учетом пробок. Навигационное оборудование устанавливается на подвижном составе общественного транспорта, в том числе и для целей контроля. Космические снимки используются для получения оперативной информации в районах стихийных бедствий и для решения различных задач, например, муниципального управления. Примеры можно множить и все они подтверждают тот факт, что результаты космической деятельности стали неотъемлемой частью современной жизни. Неудивительно также, что различные космические технологии часто используются совместно. Отсюда, конечно, идея интеграции технологий и создание единых сквозных технологических цепочек лежит на поверхности. В этом смысле не является исключением технологии дистанционного зондирования Земли (ДЗЗ) из космоса и глобальных навигационных спутниковых систем (ГНСС). Но обо всем по порядку…

ГЛОБАЛЬНЫЕ НАВИГАЦИОННЫЕ СПУТНИКОВЫЕ СИСТЕМЫ

Глобальная навигационная спутниковая система (ГНСС) - комплекс технических и программных средств, позволяющих получить свои координаты в любой точке земной поверхности путем обработки спутниковых сигналов. Основными элементами любой ГНСС являются:

  • орбитальная группировка спутников;
  • наземная система управления;
  • приемное оборудование.

Спутники постоянно передают информацию о своем положении на орбите, наземные стационарные станции обеспечивают мониторинг и контроль положения спутников, а также их технического состояния. Приемное оборудование представляет собой различные спутниковые навигаторы, которые используются людьми в своей профессиональной деятельности или быту.

Принцип работы ГНСС основан на измерении расстояния от антенны приемного устройства до спутников, положение которых известно с большой точностью. Расстояние вычисляется по времени задержки распространения сигнала, передаваемого спутником на приемник. Для определения координат приемника достаточно знать положение трех спутников. На деле используются сигналы с четырех (или более) спутников - для устранения погрешности, вызванной разницей между часами спутника и приемника. Зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, программа «зашитая» в навигатор вычисляет его положение в пространстве, таким образом, ГНСС позволяет быстро определить местоположение с высокой точностью в любой точке земной поверхности, в любое время, при любых погодных условиях. Каждый спутник системы, помимо основной информации, передает также вспомогательную, необходимую для непрерывной работы приемного оборудования, в т. ч. полную таблицу положения всей спутниковой группировки, передаваемую последовательно в течение нескольких минут. Это необходимо для ускорения работы приемных устройств. Следует отметить немаловажную характеристику основных ГНСС - для пользователей, обладающих спутниковыми приемниками (навигаторами) получение сигналов бесплатно.

Общим недостатком использования любой навигационной системы является то, что при определенных условиях сигнал может не доходить до приемника, или приходить со значительными искажениями или задержками. Например, практически невозможно определить свое точное местонахождение внутри железобетонного здания, в тоннеле, в густом лесу. Для решения этой проблемы используются дополнительные навигационные сервисы, такие, например, как A-GPS.

Сегодня в космосе работает несколько ГНСС (табл. 1), находящиеся на разных этапах своего развития:

  • GPS (или NAVSTAR) - управляется Министерством обороны США; в настоящее время единственная полностью развернутая ГНСС доступная круглосуточно пользователям по всему миру;
  • ГЛОНАСС - российская ГНСС; находится в стадии завершения полного развертывания;
  • Galileo - европейская ГНСС, находящаяся на этапе создания спутниковой группировки.

Упомянем также национальные региональные ГНСС Китая и Индии, соответственно - Бэйдоу и IRNSS, находящиеся на стадии разработки и развертывания; отличается небольшим количеством спутников и национально-ориентированные.

Характеристика основных ГНСС по состоянию на март 2010 г.

Рассмотрим некоторые особенности каждой ГНСС.

GPS

Основой американской системы GPS являются спутники (рис. 2), облетающие Землю по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте примерно 20 180 км. Спутники передают сигналы в диапазонах: L1=1575,42 МГц и L2=1227,60 МГц, последние модели также в диапазоне L5=1176,45 МГц. Полную работоспособность системы обеспечивают 24 спутника, однако, для увеличения точности позиционирования и резерва на случай сбоев, общее число спутников на орбите в настоящее время составляет 31 аппарат.

Рис. 1 Космический аппарат GPS Block II-F

Первоначально GPS предназначалась только для военных целей. Первый спутник был выведен на орбиту 14 июля 1974 г., а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле. Для ограничения доступа к точной навигационной информации для гражданских пользователей вводились специальные помехи, однако с 2000 г. они были отменены, после чего точность определения координат с помощью простейшего гражданского GPS-навигатора составляет от 5–15 м (высота определяется с точностью до 10 м) и зависит от условий приема сигналов в конкретной точке, количества видимых спутников и ряда других причин. Использование глобальной системы распространения дифференциальных поправок WAAS повышает точность позиционирования GPS для Северной Америки до 1–2 м.

ГЛОНАСС

Первый спутник российской спутниковой системы навигации ГЛОНАСС был выведен на орбиту еще в советские времена - 12 октября 1982 г. Частично система была введена в эксплуатацию в 1993 г. и состояла из 12 спутников. Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трех орбитальных плоскостях с наклонением 64,8° и высотой 19 100 км. Принцип измерения и диапазоны передачи сигналов аналогичны американской системе GPS ГЛОНАСС.

рис. 2 Космический аппарат ГЛОНАСС-М

В настоящее время на орбите находятся 23 спутников ГЛОНАСС (рис. 2). Последние три космических аппарата были выведены на орбиту 2 марта 2010 г. Сейчас используются по целевому назначению - 18 спутников. Это обеспечивает непрерывную навигацию почти на всей территории России, причем, Европейская часть обеспечена сигналом почти на 100%. По планам полностью система ГЛОНАСС будет развернута к концу 2010 г.

В настоящее время точность определения координат системой ГЛОНАСС несколько ниже аналогичных показателей для GPS (не превышает 10 м), при этом следует отметить, что совместное использование обеих навигационных систем существенно повышает точность позиционирования. Для улучшения работы систем GPS, ГЛОНАСС и Galileo на территории Европы и повышения их точности служит Европейская геостационарная служба навигационного покрытия (EGNOS).

Galileo

Европейская ГНСС Galileo предназначена для решения навигационных задач для любых подвижных объектов с точностью менее 1 м. В отличие от американской GPS и российской ГЛОНАСС, Galileo не контролируется военными ведомствами. Ее разработку осуществляет Европейское космическое агентство. В настоящее время на орбите находятся 2 тестовых спутника GIOVE-A (рис. 3) и GIOVE-B, запущенных, соответственно в 2005 и 2008 гг. Планируется, что навигационная система Galileo полностью будет развернута в 2013 г. и будет состоять из 30 спутников.



рис. 3 Космический аппарат GIOVE-A

СПУТНИКОВЫЕ НАВИГАТОРЫ

Как уже отмечалось, составной частью любой спутниковой навигационной системы является приемное оборудование. Современный рынок навигационных приемников (навигаторы) отличается таким же многообразием, как и рынок любой другой электронной и телекоммуникационной продукции. Все навигаторы можно подразделить на профессиональные приемные устройства и приемники, используемые широким кругом пользователей. Остановимся подробнее на последних. Для них используются различные названия: GPS-навигаторы, GPS-трекеры, GPS-приемники, спутниковые навигаторы и т. д. В последнее время популярными становятся навигаторы, встроенные в другие устройства (карманные компьютеры, мобильные телефоны, коммуникаторы, часы и т. д.). Среди собственно спутниковых навигаторов особый большой класс составляют автомобильные навигаторы. Широкое распространение получают и навигаторы, предназначенные для пеших, водных и т. д. походов (их часто называют просто GPS-навигаторы, несмотря на то, что они могут принимать и сигналы ГЛОНАСС).

Обязательной принадлежностью практически всех персональных навигаторов является GPS-чипсет (или ресивер), процессор, оперативная память и монитор для отображения информации.

Современные автомобильные навигаторы способны прокладывать маршрут с учетом организации дорожного движения и осуществлять адресный поиск. Особенностью персональных навигаторов для туристов является, как правило, возможность приема спутникового сигнала в сложных условиях, например густого леса или горной местности. Некоторые модели имеют водонепроницаемый корпус повышенной удароустойчивости.

Основными производителями персональных спутниковых навигаторов являются:

  • Garmin (США; навигаторы для воздушного, автомобильного, мото- и водного транспорта, а также для туристов и спортсменов)
  • GlobalSat (Тайвань; навигационное оборудование различного назначения, в т. ч. GPS-приемники)
  • Ashtech (быв. Magellan) (США; персональные и профессиональные навигационные приемники)
  • MiTac (Тайвань; автомобильные и туристические навигаторы, карманные персональные компьютеры и коммуникаторы со встроенным GPS-приемником под брендами Mio, Navman, Magellan)
  • ThinkWare (Корея; персональные навигационные устройства под брендом I-Navi)
  • TomTom (Нидерланды; автомобильные навигаторы) и др.

Профессиональное навигационное оборудование, в т. ч. для инженерно-геодезических и маркшейдерских работ производят такие компании как Trimble, Javad (США), Topcon (Япония), Leica Geosystems (Швейцария) и др.

Как уже отмечалось, в настоящее время выпускается большое количество персональных навигационных устройств, различающихся по своим возможностям и цене. Мы в качестве иллюстрации опишем особенности только одного достаточно «продвинутого» прибора, для того, чтобы охарактеризовать возможности всего класса современных GPS-навигаторов. Это - одна из последних новинок популярной серии автомобильных навигаторов - TomTom GO 930 (описание взято с сайта GPS-Клуба - http://gps-club.ru).

Модель навигатора TomTom GO 930 (рис. 6) сочетает в себе последние тенденции автомобильной навигации - карты нескольких континентов, беспроводную гарнитуру и уникальную технологию Map Share™



рис. 4 Автомобильный навигатор TomTom GO 930

Все устройства TomTom разрабатываются самой компанией и являются полностью «plug&play», и это означает, что их можно просто вынуть из коробки и начать использовать, не читая длинных инструкций. Интуитивно понятный интерфейс и «иконки» на русском языке, позволят водителям легко проложить маршрут. Ясные голосовые инструкции на русском языке помогают автомобилистам добраться до пункта назначения легко и без лишнего стресса. Навигатор поддерживает функцию беспроводного управления и технологию Enhanced Positioning Technology (EPT), созданную для беспрерывной навигации даже в туннелях или плотно застроенных областях.

Поставщиком навигационных карт TomTom является Tele Atlas, входящий в TomTom Group. В добавление к тому, что TomTom имеет полностью русифицированные карты, это единственный поставщик решений для навигации, который предлагает карты Европы и США на избранных моделях навигаторов.

Инфраструктура дорог мира меняется на 15% ежегодно. Поэтому TomTom дает своим пользователям возможность бесплатной загрузки последней версии карт в течение 30 дней с момента первого пользования навигатором, а также доступ к уникальной технологии Map Share™. Пользователи навигаторов TomTom могут загрузить новую карту через сервис TomTom HOME. Таким образом, последняя версия карты может быть доступна в любое время. Более того, автомобилисты могут пользоваться технологией Map Share™ - это бесплатное обновление карты вручную прямо на навигаторе, как только становятся известны изменения на дорогах, путем всего лишь нескольких касаний сенсорного экрана. Пользователи могут вносить изменения названий улиц, ограничения скорости на определенных отрезках пути, направления движения, перекрытые проезды, а также изменения в POI (точки интереса).

Уникальная технология TomTom по совместному использованию карт расширяет навигационные функции: теперь пользователь может мгновенно вносить изменения непосредственно в свою карту. Кроме того, пользователь может получать данные об аналогичных изменениях, выполненных всем сообществом TomTom.

Функция такого совместного использования карт позволяет:

  • ежедневно и незамедлительно вносить изменения в карты Вашего устройства TomTom;
  • получать доступ к самому крупному в мире сообществу пользователей навигационных устройств;
  • ежедневно делиться обновлениями с другими пользователями TomTom;
  • получать полный контроль над загружаемыми обновлениями;
  • в любой местности использовать самые лучшие и точные карты.

КАРТЫ ДЛЯ ПЕРСОНАЛЬНЫХ СПУТНИКОВЫХ НАВИГАТОРОВ

Современные навигаторы немыслимы без наличия в них полноценных крупномасштабных карт, которые показывают объекты не только маршруту движения, но и на всей территории обзора (рис 7).

рис. 5 Образец мелкомасштабной навигационной карты

В навигаторы можно загружать как растровые так и векторные карты. Об одном из видов растровой информации мы поговорим особо, а здесь же заметим, что отсканированные и загруженные в GPS-приемники бумажные карты - не самый лучший способ отображения пространственной информации. Помимо невысокой точности позиционирования, возникает также проблема привязки координат карты к координатам, выдаваемым приемником.

Векторные цифровые карты, особенно в ГИС-форматах, представляют собой фактически базу данных, где хранится информация о координатах объектов в виде, например, «шейп-файлов» и, отдельно, качественные и количественные характеристики. При таком подходе в памяти навигаторов, информация занимает гораздо меньше места и появляется возможность загружать большое количество полезной справочной информации: бензозаправочные станции, гостиницы, кафе и рестораны, стоянки, достопримечательности и т. д.

Как уже говорилось выше, существуют навигационные системы, позволяющие пользователю дополнять карты навигатора своими собственными объектами.

В некоторых персональных навигационных устройствах, особенно, предназначенных для туристов, существует возможность наносить объекты самому (т. е. фактически составлять собственные карты и схемы). Для этих целей предусмотрен специальный несложный графический редактор.

Особо следует остановиться на режимных вопросах. Как известно, в России, до сих пор существуют ограничения на использование крупномасштабных топографических карт. Это в достаточной степени сдерживает развитие навигационной картографии. Следует, однако, отметить, что в настоящее время Федеральная служба государственной регистрации, кадастра и картографии (Росррестр) поставила задачу к 2011 г. иметь полное покрытие РФ (экономически развитых районов и городов) цифровыми навигационными картами масштабов 1:10 000, 1:25 000, 1:50 000. На этих картах будут отображаться навигационная информация, представленная графом дорог, цифровая картографическая подложка и тематическая информация (объекты придорожной инфраструктуры и сервиса).

НАВИГАЦИОННЫЕ СЕРВИСЫ

Развитие и совершенствованием спутниковых навигационных систем и приемного оборудования, а также все активное внедрение в жизнь WEB-технологий и WEB-сервисов послужило толчком к появлению различных навигационных сервисов. Многие модели навигаторов способны принимать и учитывать при прокладке маршрута информацию о ситуации на дорогах, по возможности избегая транспортных заторов. Данные о трафике (пробках) предоставляются специализированными службами и сервисами, по GPRS протоколу или из радио эфира по каналам RDS диапазона FM.

КОСМИЧЕСКИЕ СНИМКИ В НАВИГАТОРАХ

Любые навигационные карты достаточно быстро устаревают. Появление космических съемок сверхвысокого пространственного разрешения (в настоящее время космические аппараты WorldView-1, WorldView-2, GeoEye-1 обеспечивают разрешение до 50 см) дают картографии мощный инструмент обновления содержания карт. Однако после обновления карты и до ее выпуска и возможности «загрузки» в навигационное устройство проходит немало времени. Космические снимки предоставляют возможность сразу получить в навигаторе самую актуальную информацию.

Особый интерес с точки зрения использования космических снимков представляют собой, т. н. LBS-службы. LBS (Location-based service) представляет собой сервис, в основе которого - определение местоположения мобильного телефона. С учетом повсеместного развития мобильной связи и расширения услуг, предоставляемых сотовыми операторами, возможности рынка LBS-сервисов трудно переоценить. LBS не обязательно используют GPS-технологии для определения местоположения. Местоположение также может быть определено с использованием базовых станций сотовых сетей GSM и UMT.

рис. 6 Космический снимок в мобильном телефоне Nokia

Производители мобильных телефонов и навигационных устройств, предоставляя услуги LBS, все больше внимания уделяют космическим снимкам. Приведем в качестве примера компанию Nokia (Финляндия), которая подписала в 2009 г. соглашение с компанией DigitalGlobe, оператором спутников сверхвысокого разрешения WorldView-1, WorldView-2 и QuickBird, об обеспечении пользователей сервиса Ovi Maps доступом к космическим снимкам (заметим, что Ovi - новый бренд компании Nokia для Интернет-сервисов).

Помимо наглядности при навигации по городским территориям (рис. 8), очень полезно иметь подложку в виде космических снимков, путешествуя по малоизученной территории, на которую нет свежих и детальных карт. Сервис Ovi Maps может быть загружен практически во все устройства Nokia.

Интеграция космических снимков сверхвысокого разрешения в LBS-сервисы позволяет на порядок повысить их функциональность.

Одна из перспективных возможностей использования данных дистанционного зондирования Земли из космоса - создание по ним трехмерных моделей. Трехмерные карты отличаются большой наглядностью, и позволяют лучше ориентироваться, особенно в условиях городской застройки (рис. 9).



рис. 7 Трехмерная навигационная карта

В заключение отметим большую перспективность использования ортотрансформированных снимков сверхвысокого разрешения в спутниковых навигаторах и LBS-сервисах. Компания «Совзонд» выпускает продукты ОРТОРЕГИОН и ОРТО10, которые базируются на ортотрансформированных снимках с космических аппаратов ALOS (ОРТОРЕГИОН) и WorldView-1, WorldView-2 (ОРТО10). Ортотрансформирование отдельных сцен выполняется по методу коэффициентов рациональных полиномов (RPC) без использования наземных опорных точек, что существенно удешевляет работу. Проведенные исследования показали, что по своим характеристикам продукты ОРТОРЕГИОН и ОРТО10 вполне могут служить основой для обновления навигационных карт, соответственно масштабов 1:25 000 и 1:10 000. Ортофотомозаики, представляющие собой фактически фотокарты, дополненные подписями, могут также непосредственно загружаться в навигаторы.

Интеграция космических снимков высокого разрешения в навигационные системы и LBS-сервисы, позволяет на порядок повысить их функциональность, удобство и эффективность использования.

Необходимость определения своего местоположения, а еще лучше точных географических координат, во все времена была первоочередной задачей мореплавателей, путешественников и военных. Именно для решения военных задач во второй половине 20 века и была задумана глобальная навигационная система. Зародилась идея в США, где уже в 1964 году появилась первая позиционирования, предназначенная для военных целей. В СССР своя система определения местоположения была запущена в 1967 году.

Первые системы были очень несовершенны, точность определения координат была слабой, навигационные спутники часто выходили из строя и свое местоположение можно было узнать примерно раз в 2 часа. Но сама идея была прорывной, и именно на этих первых системах отрабатывалось и доводилось до ума то, что сегодня мы называем навигационной системой определения местоположения. Давайте разберемся, как же работает спутниковая система навигации.

Как работают навигационные системы GPS и ГЛОНАСС

Физические принципы работы навигационной системы

Общий алгоритм работы системы GPS и ГЛОНАСС

  1. Основная идея;
  2. Определение расстояния до спутников;
  3. Синхронизация по времени;
  4. Определение положения спутника на орбите;
  5. Корректировка погрешностей.

Основная идея

С появлением искусственных спутников Земли и установкой на них передатчиков радиосигнала гигагерцовой частоты, появилась возможность принимать от них этот сигнал над достаточно обширной территорией. Если измерить точное расстояние до 3-х спутников, то при совмещении 3-х сфер, радиус которых и есть расстояние до спутников, они пересекутся в единственной точке, которая и будет вашим местоположением. Дальнейшие расчеты показали, что для гарантированного наблюдения 3-х спутников с территории любой точки Земли, необходимо запустить 18 передатчиков. А для дополнительного определения положения над поверхностью Земли и точной корректировки времени необходимы данные еще с одного спутника. Соответственно 24 спутника будет достаточно для полного определения координат в любой точке земного шара.


Ударная сила №115: «Космический навигатор»

Определение расстояния до спутников

Из школы мы знаем, что для определения расстояния необходимо скорость объекта умножить на время. Соответственно, зная скорость распространения сигнала, а в вакууме это скорость света, и время его прохождения можно легко рассчитать путь, те есть расстояние до спутника. Чтобы определить промежуток времени необходимо знать точное время подачи и приема сигнала. Для этого на спутнике устанавливаются очень точные атомные часы, и время подачи сигнала записывается и передается отдельным пакетом данных.

На земле навигационный приемник, принимая сигнал, засекает время приема и отнимает от него полученное отдельно время подачи сигнала. Полученный отрезок времени и будет временем прохождения сигнала от спутника до приемника. После умножения данного временного отрезка на скорость света и получится искомое расстояние до спутника.

Система GPS слежения

Синхронизация по времени

Итак, для определения местоположения теоретически необходимо провести измерения расстояний до трех любых спутников. Но в бытовых приемниках навигационных сигналов стоят обычные кварцевые часы, имеющие определенную погрешность. Поэтому для того, чтобы на практике правильно определить местоположение необходимо произвести еще одно измерение до четвертого спутника. Имея четыре измерения расстояний можно с помощью специально созданной компьютерной программы синхронизировать время спутников со временем приемника и определить точное местоположение.


Определение положения спутника на орбите

При проведении расчетов очень важно знать точное место спутника в момент подачи радиосигнала. С помощью компьютеров производится расчет точного положения спутника на орбите через заданные очень маленькие промежутки времени. Эта информация заноситься в память компьютера установленного на спутнике и передается в излучаемом им сигнале.

Корректировка погрешностей

  • При любых измерениях существует вероятность ошибок . Источниками ошибок в нашем случае являются преимущественно два фактора: погрешности измерения времени и прохождения радиосигнала через ионосферу Земли.
  • Погрешности при измерении времени будут всегда . Просто невозможно сделать часы, сохраняющие точность на протяжении всего времени эксплуатации – все равно понадобиться корректировка набегающей погрешности измерения.
  • Еще одно узкое место при расчете расстояния – наличие у Земли ионосферы. Через ионосферу по законам физики радиосигнал не может распространяться со скоростью света, поэтому формула определения пути на этом участке будет рассчитываться неправильно.
  • Для того чтобы минимизировать влияние этих факторов вводят так называемые корректировочные коэффициенты , с помощью которых удается значительно улучшить точность вычисления местоположения.

Существующие навигационные системы


В настоящее время есть всего две полностью глобальные системы – GPS и ГЛОНАСС. Физические принципы работы их полностью идентичны, а системы различаются только высотой орбит эшелонов спутников и частотами используемых радиосигналов, кроме того обе системы оснащены дополнительным более точным кодированным радиосигналом используемым только для военных целей. Навигационная система – это комплекс высокотехнологичных, дорогих и очень сложных в обслуживании устройств, располагают которыми пока только США и Россия.

Системы спутниковой навигации.

Системы спутниковой навигации.


Определение точного местонахождения того или иного объекта всегда имело для человека огромное значение. Возможность определения своего положения на местности актуальна для различных направлений деятельности: ею пользуются путешественники (туристы, охотники, рыболовы), компании-перевозчики для отслеживания грузовиков во время международных рейсов, банки для обеспечения безопасности инкассаторских машин, правоохранительные органы для поиска автомобилей. Но самое главное значение система позиционирования имеет в военной области. Поэтому не случайно, что первым заказчиком разработки подобной системы стали Вооружённые Силы армии США.

Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские учёные во главе с Ричардом Кершнером, наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если вы точно знаете свои координаты на Земле, то становится возможным измерить положение и скорость спутника, и наоборот, точно зная положение спутника, можно определить собственную скорость и координаты.

Реализована эта идея была через 20 лет. Первый тестовый спутник выведен на орбиту 14 июля 1974 г США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, Глобальная система позиционирования или сокращённо GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.
Первоначально GPS - глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983г. был сбит вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту, президент США Рональд Рейган разрешил частичное использование системы навигации для гражданских целей. Но точность была уменьшена специальным алгоритмом. Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности на частоте L1 и с успехом компенсируют эту составляющую ошибки, и в 2000 г. это загрубление точности было отменено указом президента США.

Сегодня в мире существует американская система NAVSTAR GPS, российская ГЛОНАСС и разрабатываемая европейским союзом система GALILEO. Вначале рассмотрим появившуюся первой в мире систему глобального позиционирования NAVSTAR GPS.

NAVSTAR GPS (NAVigation Satellites providing Time And Range; Global Positioning System) - спутниковая система навигации, часто именуемая GPS. Позволяет в любом месте Земли (включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.

Основной принцип использования системы - определение местоположения путём измерения расстояний до объекта от точек с известными координатами - спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. Таким образом, для определения координат и высоты приёмника, используются сигналы как минимум с четырёх спутников.

Космический сегмент - основой системы являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте примерно 20180 км. Спутники излучают сигналы в диапазонах: L1=1575,42 МГц и L2=1227,60 МГц, последние модели также на L5=1176,45 МГц. Навигационная информация может быть принята антенной (обычно в условиях прямой видимости спутников) и обработана при помощи GPS-приёмника. Информация в C/A коде (стандартной точности), передаваемая с помощью L1, распространяется свободно, бесплатно, без ограничений на использование. Военное применение (точность выше на порядок) обеспечивается зашифрованным P(Y) кодом. 24 спутника обеспечивают 100 % работоспособность системы в любой точке земного шара, но не всегда могут обеспечить уверенный приём и хороший расчёт позиции. Поэтому, для увеличения точности позиции и резерва на случай сбоев, общее число спутников на орбите поддерживается в большем количестве (31 шт к Сентябрю 2007 года). Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено 37.


Наземные станции контроля космического сегмента - слежение за орбитальной группировкой осуществляется с главной контрольной станции, расположенной на авиабазе ВВС США Schriever, штат Колорадо, США и с помощью 10 станций слежения, из них три станции способны посылать на спутники корректировочные данные в виде радиосигналов с частотой 2000—4000 МГц. Спутники последнего поколения распределяют полученные данные среди других спутников.

Пользовательский сегмент - GPS приёмник: радиоприёмное устройство для определения географических координат текущего местоположения антенны приёмника, на основе данных о временных задержках прихода радиосигналов, излучаемых спутниками группы NAVSTAR. Максимальная точность измерения составляет 3-5 метров, а при наличии корректирующего сигнала от наземной станции - до 1 мм (обычно 5-10мм) на 1 км расстояния между станциями (дифференциальный метод). Точность коммерческих GPS-навигаторов составляет от 150 метров (у старых моделей при плохой видимости спутников) до 3 метров (у новых моделей на открытом месте). Кроме того, при использовании систем WAAS/EGNOS/MSAS и местных систем передачи поправок точность может быть повышена до 1-2 метров по горизонтали. До 1 мая 2000 года точность искусственно занижалась путем внесения в передаваемые спутником данные поправок.

Оборудование условно делится на пользовательское и профессиональное. Профессиональное отличается качеством изготовления компонент (особенно антенн) и ПО, поддерживаемыми режимами работы системами навигации и, разумеется, ценой. Существуют GPS-моноблоки, имеющие собственный процессор для необходимых расчётов, а также дисплей для отображения информации, и GPS-приставки к КПК и ноутбукам.



Выше была рассмотрена американская система позиционирования на местности Navstar. Однако, рассмотренная система, не является единственной в мире. Существует ещё две системы - российская система спутниковой навигации ГЛОНАСС и европейская система GALILEO. Сначала несколько слов о российской системе:

Система ГЛОНАСС состоит из трех подсистем:
. подсистемы космических аппаратов (ПКА);
. подсистемы контроля и управления (ПКУ);
. навигационной аппаратуры потребителей (НАП).

Подсистема космических аппаратов системы ГЛОНАСС состоит из 24-х спутников, находящихся на круговых орбитах высотой 19100 км, наклонением 64,8° и периодом обращения 11 часов 15 минут в трех орбитальных плоскостях. Орбитальные плоскости разнесены по долготе на 120°. В каждой орбитальной плоскости размещаются по 8 спутников с равномерным сдвигом по аргументу широты 45°. Кроме этого, в плоскостях положение спутников сдвинуты относительно друг друга по аргументу широты на 15°. Такая конфигурация ПКА позволяет обеспечить непрерывное и глобальное покрытие земной поверхности и околоземного пространства навигационным полем.


Подсистема контроля и управления состоит из Центра управления системой ГЛОНАСС и сети станций измерения, управления и контроля, рассредоточенной по всей территории России. В задачи ПКУ входит контроль правильности функционирования ПКА, непрерывное уточнение параметров орбит и выдача на спутники временных программ, команд управления и навигационной информации.

Навигационная аппаратура потребителей состоит из навигационных приемников и устройств обработки, предназначенных для приема навигационных сигналов спутников ГЛОНАСС и вычисления собственных координат, скорости и времени. Ниже показана фотография навигатора, предназначенного для российской системы:


Принцип определения позиции аналогичен американской системе NAVSTAR. Первый спутник ГЛОНАСС был выведен на орбиту 12 октября 1982 года. 24 сентября 1993 года система была официально принята в эксплуатацию. Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приемников ГЛОНАСС, возможность определения:
. горизонтальных координат;
. вертикальных координат;
. составляющих вектора скорости;
. точного времени.

Точности определения можно значительно улучшить, если использовать дифференциальный метод навигации и/или дополнительные специальные методы измерений.
Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС. При приеме навигационных радиосигналов ГЛОНАСС приемник, используя известные радиотехнические методы, измеряет дальности до видимых спутников и измеряет скорости их движения.

Одновременно с проведением измерений в приемнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Кроме того, цифровая информация описывает положение других спутников системы (альманах) в виде кеплеровских элементов их орбит и содержит некоторые другие параметры. Результаты измерений и принятая цифровая информация являются исходными данными для решения навигационной задачи по определению координат и параметров движения. Навигационная задача решается автоматически в вычислительном устройстве приемника, при этом используется известный метод наименьших квадратов. В результате решения определяются три координаты местоположения потребителя, скорость его движения и осуществляется привязка шкалы времени потребителя к высокоточной шкале Универсального координированного времени (UTC).

Полная группировка спутников в соответствии с федеральной целевой программой «Глобальная навигационная система» должна быть быть развернута к концу 2010 года. Эта программа выполнена, 3 сентября 2010 г. была запущена ракета-носитель "Протон-М" с тремя спутниками системы глобального позиционирования ГЛОНАСС, в результате чего общая численность группировки спутников доведена до 26 аппаратов. Спутники «ГЛОНАСС-М» в составе орбитальной группировки будут находиться, как минимум, до 2015 года.

GALILEO - европейский проект спутниковой системы навигации. Европейская система предназначена для решения навигационных задач для любых подвижных объектов с точностью менее одного метра. Ныне существующие GPS-приёмники не смогут принимать и обрабатывать сигналы со спутников Галилео, хотя достигнута договорённость о совместимости и взаимодополнению с системой NAVSTAR GPS третьего поколения. Так как финансирование проекта будет осуществляться в том числе за счёт продажи лицензий производителям приёмников, следует так же ожидать, что цена на последние будет несколько выше сегодняшних.

Помимо стран европейского сообщества достигнуты договорённости на участие в проекте с государствами - Китай, Израиль, Южная Корея, Украина и Россия. Кроме того, ведутся переговоры с представителями Аргентины, Австралии, Бразилии, Чили, Индии, Малайзии. Ожидается, что Галилео войдёт в строй в 2013, когда на орбиту будут выведены все 30 запланированных спутников (27 операционных и 3 резервных). Компания Arianespace заключила договор на 10 ракет-носителей "Союз" для запуска спутников начиная с 2010 года. Космический сегмент будет дополнен наземной инфраструктурой, включающей в себя два центра управления и глобальную сеть передающих и принимающих станций.

В отличие от американской GPS и российской ГЛОНАСС, система GALILEO не контролируется ни государственными, ни военными учреждениями. Разработку осуществляет ЕКА (европейское космическое агентство). Общие затраты на создание системы оцениваются в 3,8 млрд. евро.

Запущенные сегодня навигационные спутники "Глонасс-М" не удалось вывести на расчетную орбиту. Причина - в нештатной ситуации, произошедшей во время выведения аппаратов на орбиту. По предварительным данным, спутники упали в Тихий океан.

Как сообщает пресс-служба Федерального космического агентства (Роскосмос), три космических аппарата "Глонасс-М", стартовавшие сегодня с космодрома Байконур на ракета-носителе "Протон-М", должны были быть выведены на околоземную орбиту. Планировалось, что с выводом спутников на орбиту будет завершено формирование российской глобальной навигационной спутниковой системы ГЛОНАСС, сигнал которой смогут принимать пользователи навигаторов по всему миру.

В настоящее время специалисты выясняют, что послужило причиной нештатной ситуации.

ГЛОНАСС - глобальная навигационная спутниковая система - одна из двух функционирующих на сегодня систем глобальной спутниковой навигации. Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях. Принцип измерения аналогичен американской системе навигации GPS. С переходом на спутники "Глонасс-К" точность системы ГЛОНАСС станет сопоставимой с точностью системы GPS — единственной зарубежной развернутой навигационной системой.

Космический аппарат нового поколения "ГЛОНАСС-К" успешно выведен на орбиту и взят на управление наземными средствами Космических войск РФ.

Как в сообщили Космических войсках России, старт и полет ракеты-носителя "Союз-2.1б" с разгонным блоком "Фрегат" и космическим аппаратом "ГЛОНАСС-К", а также отделение спутника прошли в штатном режиме. Сразу после отделения "ГЛОНАСС-К" от ракеты-носителя аппарат был взят на управление средствами главного испытательного центра испытаний и управления космическими средствами имени Титова.

В настоящее время с космическим аппаратом установлена и поддерживается устойчивая телеметрическая связь. Бортовые системы спутника функционируют нормально.

Запуск нового спутника системы ГЛОНАСС был осуществлен с космодрома Плесецк. Ракета-носитель "Союз-2.1б" с разгонным блоком "Фрегат" и космическим аппаратом "ГЛОНАСС-К" успешно стартовала сегодня утром.

Напомним, первоначально запуск ракеты-носителя был запланирован на 24 февраля. Однако он был перенесен на сутки по техническим причинам.

Предыдущий запуск ракеты-носителя "Протон-М" с космическими аппаратами "ГЛОНАСС-М" 5 декабря 2010 г. завершился выведением орбитального блока на нерасчетную орбиту и его падением в акваторию Тихого океана. Три спутника "ГЛОНАСС-М" оказались утрачены.

После инцидента президент Дмитрий Медведев снял с должностей вице-президента, главного конструктора по средствам выведения РКК "Энергия" Вячеслава Филина и заместителя руководителя Роскосмоса Виктора Ремишевского.

Еще один инцидент с неудачным запуском спутника Гео-ИК-2 произошел 1 февраля 2011 г. Спутник должен был возобновить космогеодезическую программу России, но в расчетное время не вышел на связь. Спустя некоторое время он был обнаружен на неправильной орбите с помощью специалистов из США.